
SUMS OF HERMITIAN SQUARES DECOMPOSITION OF

NON-COMMUTATIVE POLYNOMIALS IN NON-SYMMETRIC

VARIABLES USING NCSOSTOOLS

KRISTIJAN CAFUTA1

Abstract. Numerous applied problems contain matrices as variables, and
the formulas therefore involve polynomials in matrices. To handle such poly-
nomials it is necessary to study non-commutative polynomials. In this paper
we will present an algorithm and its implementation in the free Matlab pack-
age NCSOStools using semidefinite programming to check whether a given
non-commutative polynomial in non-symmetric variables can be written as
a sum of Hermitian squares.

1. Introduction

Optimization problems that involve positivity of polynomials in commuting
variables, which is studied in classical real algebraic geometry, can be found
in many areas, including operations research [Sho91, Nie09], probability and
mathematical finance [Las09]. Non-commutative analogue of classical real alge-
braic geometry is free real algebraic geometry which studies positivity of poly-
nomials in freely non-commuting variables. Such problems can have matrices
as variables, and the formulas can involve polynomials in matrices. Free real
algebraic geometry offers numerous applications as well: applications to con-
trol theory and system engineering [dHMP08], to quantum physics [PNA10], to
mathematical physics and operator algebras [KS08a, KS08b], to investigation
of PDEs and eigenvalues of polynomial partial differential operators [Cim10] to
name just a few.

At VOCAL 2008 it was presented how to find a sum of Hermitian squares
(SOHS) decomposition of a non-commutative polynomial (in symmetric vari-
ables with Real coefficients) using semidefinite programming, for which pur-
pose we have developed a freely available open source Matlab toolbox called
NCSOStools. This was the beginning of a series of publications on various
problems of polynomial optimization problems with non-commuting symmet-
ric variables, including trace optimization and constrained optimization, for
example [KP10, CKP10, CKP11, CKP12, BCKP13a, BCKP13b, KP16]. All
these algorithms have also been implemented in NCSOStools. In this paper we
will set foundations for the generalization by using semidefinite programming,

Date: August 22, 2017.
2000 Mathematics Subject Classification. Primary 13J30, 90C22; Secondary 08B20, 11E25,

90C90.
Key words and phrases. noncommutative polynomial, sum of Hermitian squares, semidef-

inite programming, Matlab toolbox, NCSOStools.
1The author acknowledge the financial support from the Slovenian Research Agency (re-

search core funding No. P1-0222 and project J1-8132).
1

2 KRISTIJAN CAFUTA

which was presented at VOCAL 2016. We will replace symmetric variables with
non-symmetric variables and therefore extend the theory of SOHS decomposi-
tions of non-commutative polynomials on symmetric matrices to non-symmetric
matrices.

1.1. Notation: NS polynomials. We denote the sets of natural and real
numbers with N := {1, 2, . . . } and R. For a fixed n ∈ N, let 〈X,X∗〉 consist
of words in the 2n non-commuting letters X1, . . . , Xn, X

∗
1 , . . . , X

∗
n (including

the empty word denoted by 1), i.e., 〈X,X∗〉 is the monoid freely generated by
letters X = (X1, . . . , Xn) and X∗ = (X∗1 , . . . , X

∗
n). The set of all words from

the monoid 〈X,X∗〉 length at most d is denoted by 〈X,X∗〉d.
We write R〈X,X∗〉 = R〈X1, . . . , Xn, X

∗
1 , . . . , X

∗
n〉 for the algebra of real poly-

nomials in non-symmetric non-commuting variables X = (X1, . . . , Xn) and
X∗ = (X∗1 , . . . , X

∗
n). The elements of algebra R〈X,X∗〉 are linear combina-

tions of words in the 2n letters X,X∗. They are called NS polynomials. The
degree of f is the length of the longest word in an NS polynomial f ∈ R〈X,X∗〉
and is denoted by deg f .

A monomial is an element of the form aw where 0 6= a ∈ R and w ∈ 〈X,X∗〉
and a is its coefficient. Therefore words are monomials with coefficient 1.

We equip algebra R〈X,X∗〉 with the involution f 7→ f∗, fixing R point-wise,
sending Xi 7→ X∗i , X∗j 7→ Xj and reversing words. Recall that an involution

has the properties (f + g)∗ = f∗ + g∗, (fg)∗ = g∗f∗ and f∗∗ = f for all NS
polynomials f, g ∈ R〈X,X∗〉.

Example 1.1. Let f = X1X3 − 4(X∗2)2X3. Then

deg f = 3 and f∗ = X∗3X
∗
1 − 4X∗3X

2
2 .

Therefore R〈X,X∗〉 is the ∗-algebra freely generated by 2n non-symmetric
letters. The involution ∗ extends naturally to matrices over algebra R〈X,X∗〉.
For instance, if V = (vi) is a (column) vector of NS polynomials vi ∈ R〈X,X∗〉,
then V ∗ is the row vector with components v∗i . We shall also use V t to denote
the row vector with components vi.

The set of all symmetric elements in algebra R〈X,X∗〉 is denoted by SymR〈X,X∗〉,
i.e.,

SymR〈X,X∗〉 = {f ∈ R〈X,X∗〉 | f = f∗}.

1.2. Semidefinite programming. Semidefinite programming (SDP) is a gen-
eralization of linear programming, where nonnegativity constraints on real vari-
ables in linear programming are replaced by semidefiniteness constraints on
matrix variables. It is a subfield of convex optimization dealing with the opti-
mization of a linear objective function over the intersection of an affine subspace
with the cone of positive semidefinite matrices. More precisely, given s× s self-
adjoint matrices C, A1, . . . , Am of the same size over R and a vector b ∈ Rm,
we formulate a semidefinite program in standard primal form as follows:

(PSDP)
inf 〈C,G〉
s. t. 〈Ai, G〉 = bi, i = 1, . . . ,m

G � 0.

SOHS DECOMPOSITION OF NS POLYNOMIALS USING NCSOSTOOLS 3

Here 〈·, ·〉 stands for the standard inner product of matrices: 〈A,B〉 = tr(B∗A),
where tr denotes the trace, and G � 0 means that G is positive semidefinite.

Many problems in control theory, system identification and signal processing
can be formulated using SDPs [BGFB94, Par00, AL12]. Combinatorial opti-
mization problems can often be modeled or approximated by SDPs [Goe97].
SDP plays an important role in real algebraic geometry, where it is used e.g. for
finding sums of squares decompositions of polynomials or approximating the
moment problem [Las01, Mar08, Lau09, Las09, HN12, Nie14].

The complexity of solving semidefinite programs is mainly determined by the
order s of matrix variable G and the number of linear constraints m. Recently
the applicability of semidefinite programming was spurred by the development
of practically efficient methods to obtain optimal solutions. If the problem is
of medium size (i.e., s ≤ 1000 and m ≤ 10 000), these packages are based
on interior point methods, while packages for larger semidefinite programs use
some variant of the first order methods (see [Mit] for a comprehensive list of
state of the art SDP solvers). Given ε > 0, the interior point methods can find
an ε-optimal solution with polynomially many iterations, where each iteration
takes polynomially many real number operations, provided that (PSDP) and
its dual both have non-empty interiors of feasible sets and we have good initial
points. The variables appearing in these polynomial bounds are s,m and log ε
(cf. [WSV00, Chapter 10.4.4]). Nevertheless, once s ≥ 3000 or m ≥ 250 000,
the problem must share some special property, otherwise state of the art solvers
will fail to solve it for complexity reasons. One way of reducing the size of an
SDP is by using symmetries, cf. [BGSV12, GP04]. An alternative is to block
diagonalize the constraint matrices Ai from (PSDP), i.e., study the matrix
algebra A generated by A1, . . . , Am [Caf13].

2. Sums of Hermitian squares of NS polynomials

2.1. Positive semidefinite NS polynomials. Motivation for the next defi-
nition is the fact that a symmetric matrix A ∈ Rs×s is positive semidefinite if
and only if it is of the form BtB for some B ∈ Rs×s. Motivated by this, the
following section introduces the notion of sum of Hermitian squares (SOHS)
and explains its relation to semidefinite programming.

Definition 2.1. Non-commutative polynomial in non-symmetric variables of
the form g∗g, where g ∈ R〈X,X∗〉, is called a Hermitian square and the set of
all sums of Hermitian squares is denoted by

Σ2R〈X,X∗〉 =
{∑

i

g∗i gi : gi ∈ R〈X,X∗〉
}
(SymR〈X,X∗〉.

An NS polynomial f ∈ R〈X,X∗〉 is SOHS if it belongs to Σ2R〈X,X∗〉.
Clearly, Σ2R〈X,X∗〉 (SymR〈X,X∗〉.

Example 2.2.

X1X2 6∈ SymR〈X,X∗〉, −X1X
∗
1 ∈ SymR〈X,X∗〉 \ Σ2R〈X,X∗〉,

(X∗1)2X2 + 2X∗1X1 +X∗2X1X
∗
1X2 +X∗2X

2
1

= (X1 +X∗1X2)
∗(X1 +X∗1X2) +X∗1X1 ∈ Σ2R〈X,X∗〉.

4 KRISTIJAN CAFUTA

If NS polynomial f ∈ R〈X,X∗〉 is SOHS and we substitute (not necessar-
ily symmetric) matrices A1, . . . , An of the same size for the variables X, then
the resulting matrix f(A1, . . . , An, A

∗
1, . . . , A

∗
n) is positive semidefinite. Helton

[Hel02] and McCullough [McC01] independently proved some kind of the con-
verse of the above observation:

Theorem 2.3 (Helton-McCullough SOHS theorem). Let f ∈ R〈X,X∗〉 and
f(A1, . . . , An, A

∗
1, . . . , A

∗
n) � 0 for all n-tuples of matrices A = (A1, . . . , An) of

the same size k × k for any k. Then f ∈ Σ2R〈X,X∗〉.

We refer the reader to [MP05] for an illustrative proof. Therefore we can say
that f ∈ Σ2R〈X,X∗〉 is a positive semidefinite NS polynomial.

The following proposition (cf. [Hel02, §2.2] or [MP05, Theorem 2.1]; see also
[BKP16]) is the non-commutative version of the classical result due to Choi,
Lam and Reznick ([CLR95, §2]; see also [Par03, PW98]).

Proposition 2.4. Let f ∈ SymR〈X,X∗〉 be of degree ≤ 2d. Then f ∈
Σ2R〈X,X∗〉 if and only if there exists a positive semidefinite (PSD) matrix
G satisfying

(1) f = W ∗dGWd =
∑
i,j

Gi,j(Wd)∗i (Wd)j ,

where Wd is a vector consisting of all words in 〈X,X∗〉d.

The matrix G is called a Gram matrix for NS polynomial f .

Remark 2.5. Note that for a positive semidefinite matrix G ∈ RN×N of rank
r satisfying (1) we can write G =

∑r
i=1GiG

t
i for Gi ∈ RN×1 and defining

gi := Gt
iWd ∈ R〈X,X∗〉d yields f =

∑r
i=1 g

∗
i gi ∈ Σ2R〈X,X∗〉.

Remark 2.6. If we label columns and rows of a Gram matrix G for NS polyno-
mial f with words from vector Wd, we can see, that for every product of words
w ∈ {p∗q | p, q ∈Wd} the following must be true:

(2)
∑

p,q∈Wd
p∗q=w

Gp,q = aw,

where aw is the coefficient of the word w in NS polynomial f (aw = 0 if the
word w does not appear in f).

Let us demonstrate the Proposition 2.4 with an example.

Example 2.7. Let

f = 1 + 2X∗1X2X
∗
2X1 −X∗1X2

2 −X∗2 − (X∗2)2X1 +X∗2X2 −X2 +X2X
∗
2

and let V be the subvector
[
1 X2 X∗2 X∗2X1

]t
of vector W2. Then the Gram

matrix for NS polynomial f with respect to the vector V is given by

G(a) :=


1 −a− 1 a 0

−a− 1 1 0 −1
a 0 2 0
0 −1 0 2

 .

SOHS DECOMPOSITION OF NS POLYNOMIALS USING NCSOSTOOLS 5

That means f = V ∗G(a)V for all a. For SOHS decomposition we are looking
for a ∈ R (which in general is not unique), such that G(a) is a PSD matrix.
The characteristic polynomial of the matrix G(a) is

λ4 − 5λ3 + λ2(−2a2 − 2a+ 7) + λ(6a2 + 6a− 2)− 3a2 − 4a− 1.

From the fact that matrix A is positive semidefinite if and only if coefficients
in its characteristic polynomial alternate stricly in sign [HJ85, Cor. 7.2.4], it
follows that the matrix G(a) is positive semidefinite if and only if −1 ≤ a ≤ −1

3 .

If we choose a = −2
5 , we can see G

(
−2

5

)
= Ct

− 2
5

C− 2
5

for

C− 2
5

=


1 −3

5 −2
5 0

0 4
5 − 3

10 −5
4

0 0
√
3
2 −

√
3
4

0 0 0 1
2

 .
From

C− 2
5
V =

[
1− 3

5X2 − 2
5X
∗
2

4
5X2 − 3

10X
∗
2 − 5

4X
∗
2X1

√
3
2 X

∗
2 −

√
3
4 X

∗
2X1

1
2X
∗
2X1

]t
it follows that

f =

(
1− 3

5
X2 −

2

5
X∗2

)∗(
1− 3

5
X2 −

2

5
X∗2

)
+

(
4

5
X2 −

3

10
X∗2 −

5

4
X∗2X1

)∗(4

5
X2 −

3

10
X∗2 −

5

4
X∗2X1

)
+

(√
3

2
X∗2 −

√
3

4
X∗2X1

)∗(√
3

2
X∗2 −

√
3

4
X∗2X1

)

+

(
1

2
X∗2X1

)∗(1

2
X∗2X1

)
∈ Σ2R〈X,X∗〉.

This is not the only SOHS decomposition of NS polynomial f . Let us also look
at a = −1. Matrix G(−1) has rank 3 (in contrast to the matrix G

(
−2

5

)
which

has rank 4). It follows that we get a shorter SOHS decomposition in this case.
We can see that (for example) G(−1) = Ct

−1C−1 for

C−1 =

1 0 −1 0
0 1 0 −1
0 0 0 1

 .
From

C−1V =
[
1−X∗2 X2 −X∗2X1 X∗2X1

]t
it follows that

f = (1−X∗2)∗(1−X∗2)+(X2−X∗2X1)
∗(X2−X∗2X1)+(X∗2X1)

∗(X∗2X1) ∈ Σ2R〈X,X∗〉.
At the end of this example let us note that because of the non-uniqueness of a
decomposition G(−1) = Ct

−1C−1 we could also take

C ′−1 =

1 0 −1 0

0
√
2
2 0 −

√
2

0
√
2
2 0 0

 ,

6 KRISTIJAN CAFUTA

which would again yield a different sum of (three) Hermitian squares.

2.2. Sums of Hermitian squares and SDP. In this subsection we present
a basic algorithm (The Gram matrix method) for checking whether a given
NS polynomial f ∈ SymR〈X,X∗〉 can be written as a sum of Hermitian
squares. Following Proposition 2.4 we must determine whether there exists
a positive semidefinite matrix G such that f = W ∗dGWd. This is a special case
of a semidefinite feasibility problem (PSDP) in matrix variable G, where the
constraints 〈Ai, G〉 = bi follow from the equation (2). Every NS polynomial
f ∈ Σ2R〈X,X∗〉 is obviously symmetric and therefore aw = aw∗ for all words
w. Consequently equations (2) can be rewritten as

(3)
∑

u,v∈Wd
u∗v=w

Gu,v +
∑

u,v∈Wd
u∗v=w∗

Gu,v = aw + aw∗ for all w ∈ U2d,

where U2d stands for the subset of W2d, where we take only one word from
every pair of words (w,w∗). In other words

(4) 〈Aw, G〉 = aw + aw∗ for all w ∈ U2d,

where Aw is the symmetric matrix defined by

(5) (Aw)u,v =

 2; if u∗v ∈ {w,w∗}, w∗ = w,
1; if u∗v ∈ {w,w∗}, w∗ 6= w,
0; otherwise.

Using this notation our semidefinite program (PSDP) transforms to:

(SOHSSDP)
inf 〈I,G〉
s. t. 〈Aw, G〉 = aw + aw∗ for all w ∈ U2d,

G � 0,

where U2d stands for the subset of W2d, where we take only one word from
every pair of words (w,w∗).

As we are interested in an arbitrary positive semidefinite matrixG = [Gu,v]u,v∈W
satisfying the constraints (4), we can choose the objective function freely. In
practice one sometimes prefers solutions of small rank because this leads to
shorter SOHS decompositions. Hence we minimize the trace, a commonly used
heuristic for matrix rank minimization [RFP10] and therefore we choose C = I.
On the other hand, one sometimes prefers solutions of a higher rank (for ex-
ample when trying to compute a rational exact Gram matrix from numerical
solution [CKP15]) so we choose C = 0 because under a strict feasibility as-
sumption the interior point methods yield solutions in the relative interior of
the optimal face, which is in our case the whole feasibility set. If strict com-
plementarity is additionally provided, the interior point methods lead to the
analytic center of the feasibility set [HdKR02].

Example 2.8. Let us return to Example 2.7:

f = 1 + 2X∗1X2X
∗
2X1 −X∗1X2

2 −X∗2 − (X∗2)2X1 +X∗2X2 −X2 +X2X
∗
2

SOHS DECOMPOSITION OF NS POLYNOMIALS USING NCSOSTOOLS 7

with V =
[
1 X2 X∗2 X∗2X1

]t
and look for some matrices (5) and constraints

(4).

AX2 = AX∗
2

=

[
0 1 1 0
1 0 0 0
1 0 0 0
0 0 0 0

]
, AX2X∗

2
=

[
0 0 0 0
0 0 0 0
0 0 2 0
0 0 0 0

]
.

Corresponding linear constraints from (4) are:

G1,X2 +G1,X∗
2

+GX2,1 +GX∗
2 ,1

= 〈AX2 , G〉
= aX2 + aX∗

2
= −2,

2GX∗
2 ,X2 = 〈AX2X∗

2
, G〉 = 2aX2X∗

2
= 2.

Input: f =
∑

w∈〈X,X∗〉 aww where f ∈ SymR〈X,X∗〉 and deg f ≤ 2d.

Step 1: Construct Wd.
Step 2: Construct data Aw, b, C corresponding to the (SOHSSDP).
Step 3: Solve the (SOHSSDP) to obtain G.

If (SOHSSDP) is not feasible then
. f 6∈ Σ2R〈X,X∗〉; STOP.
end

Step 4: Compute a decomposition G = RtR.

Output: SOHS decomposition: f =
∑

i g
∗
i gi, where gi denotes the i-th

component of RWd.

Algorithm 1: The Gram matrix method for finding SOHS decompositions

Remark 2.9. Let us look for a moment at the complexity of Algorithm 1. Let
f ∈ R〈X,X∗〉, where X = (X1, . . . , Xn). If deg f = 2d, then Wd has length

N(n, d) :=
d∑

k=0

(2n)k =
(2n)d+1 − 1

2n− 1
.

This easily exceeds widely accepted manageable size by the state of the art SDP
solvers, which is of order 1000. For example, Algorithm 1 can only handle NS
polynomials in two variables if they are of degree < 5. So some reduction in
the vector of words is needed. In the next section we will introduce Newton
NS chip method, which replaces vector Wd in Algorithm 1 by a (usually much
smaller) vector W with at most kd

2 words, where k is the number of symmetric
monomials in NS polynomial f of degree 2d.

Example 2.10. Let

f = X∗X−X∗X5Y 10(X∗)5−X5(Y ∗)10(X∗)5X+X5(Y ∗)10(X∗)5X5Y 10(X∗)5,

where X = X1 and Y = X2. The size of vector of words Wd is 421−1
3 , which is

too large for today’s SDP solvers. But, it is easy to see that

f =
(
X −X5Y 10(X∗)5

)∗(
X −X5Y 10(X∗)5

)
∈ Σ2R〈X,X∗〉,

hence it is enough to use W = [X X5Y 10(X∗)5].

8 KRISTIJAN CAFUTA

3. Newton NS chip method

In the following section we present a modification of Algorithm 1 (replacing
vector Wd with a smaller vector W) by implementing non-commutative non-
symmetric analogue of the classical Newton polytope method [Rez78] and non-
symmetric analogue of the symmetric non-commutative Newton chip method
[KP10].

Similar to the degree deg f (the length of the longest word in f) we can define
min-degree denoted by mindeg f (the length of the shortest word in f). We can
also consider the degree of f in some specific variable Xi denoted by degi f
where we count repetitions of Xi and X∗i and similarly we define mindegi f .
For example deg1(X

2
1X

3
2X
∗
1) = 3.

Lemma 3.1. We can replace vector Wd in Algorithm 1 with a (smaller) vector

V :=

{
w ∈ 〈X,X∗〉

∣∣∣ mindeg f

2
≤ degw ≤ deg f

2
,
mindegi f

2
≤ degiw ≤

degi f

2
for all i

}
.

Proof. Let f =
∑

j g
∗
j gj be a SOHS decomposition. Since the lowest and the

highest degree terms in this decomposition cannot cancel, it follows

mindeg gj ≥
mindeg f

2
and deg gj ≤

deg f

2
for all j

so mindeg f
2 ≤ degw ≤ deg f

2 can hold for needed words w.
Similarly, if we look at the degree in variables, it follows

mindegi gj ≥
mindegi f

2
and degi gj ≤

degi f

2
for all i, j

so mindegi f
2 ≤ degiw ≤

degi f
2 can hold for all i and needed words w.

Below we will present a further reduction of the vector of needed words. As
we will see the main role will be played by the above V and monomials in f of
the form aww

∗w.
Before we proceed, let us remind the reader of another possibility to perhaps

reduce the size of the needed word vector. We will incorporate this in our
algorithm later.

Lemma 3.2. If there exists a constraint in (SOHSSDP) of the form 〈Au∗u, G〉 =
0 and the matrix Au∗u is diagonal, then we can delete word u from the vector
of needed words.

Proof. Since matrix G must be positive semidefinite and 0 on the diagonal of
such matrix implies the whole corresponding row and column must be 0, it
follows that we can delete word u from the vector of needed words.

For NS polynomial f =
∑

w aww we will denote byWf = {w ∈ 〈X,X∗〉 | aw 6=
0} the set of all words that appear in f .

Lemma 3.3. Let f =
∑

i g
∗
i gi and W = ∪iWgi. Then for every word w ∈ W

there exists word v ∈ 〈X,X∗〉, such that u∗u ∈ Wf for u = vw.

Proof. Let w ∈ W. Then w ∈ Wgi for some i and therefore w∗w ∈ Wg∗i gi
. If

w∗w ∈ Wf , we conclude the proof with v=1. Otherwise, if w∗w /∈ Wf , then w∗w
canceled and therefore there exists some v1 ∈ 〈X,X∗〉 such that v1w ∈ W. Let

SOHS DECOMPOSITION OF NS POLYNOMIALS USING NCSOSTOOLS 9

w1 := v1w. If w∗1w1 ∈ Wf , we conclude the proof with v = w∗v∗1v1, otherwise
we repeat the procedure with w1 instead of w. Eventually we get wk ∈ W
where w∗kwk ∈ Wf and conclude the proof with v = w∗v∗1 · · · v∗kvk · · · v1.

Following the idea from [KP10] we define the right chip function on words,
which takes some variables from the right side, i.e., rc : 〈X,X∗〉×N0 → 〈X,X∗〉
by

rc(w1 · · ·wk, i) :=


1 i = 0

wk−i+1 · · ·wk 1 ≤ i ≤ k
w1 · · ·wk otherwise

where wj ∈ {X1, . . . , Xn, X
∗
1 , . . . , X

∗
n} for all j.

Input: f =
∑

w∈〈X,X∗〉 aww where f ∈ SymR〈X,X∗〉 and deg f ≤ 2d.

Step 1: Define vector V as in Lemma 3.1.
Step 2: Set W := ∅
Step 3: For every w∗w ∈ Wf :

. For 0 ≤ i ≤ degw:

. if rc(w, i) ∈ V then

. W := W ∪ {rc(w, i)}

. end if

. end for
end for

Step 4: While there exists u ∈ W such that au∗u = 0 and u∗u 6= v∗z
for every v, z ∈W , where v 6= z:
. delete u from W
end

Step 5: Construct data Aw, b, C corresponding to the (SOHSSDP) with
W as vector of needed words.

Step 6: Solve the (SOHSSDP) to obtain G.
If (SOHSSDP) is not feasible then
. f 6∈ Σ2R〈X,X∗〉; STOP.
end

Step 7: Compute a decomposition G = RtR.

Output: SOHS decomposition: f =
∑

i g
∗
i gi, where gi denotes the i-th

component of RWd.

Algorithm 2: The Newton NS chip method

Remark 3.4. In Step 7 of Algorithm 2 we can take different decompositions,
e.g. a Cholesky decomposition (which is not unique if G is not positive definite),
the eigenvalue decomposition, etc.

Using Lemmas 3.1, 3.2 and 3.3 we formulate the next Theorem as an analogue
of the Proposition 2.4 with a (usually quite) smaller vector of needed words and
justify the use of Algorithm 2.

10 KRISTIJAN CAFUTA

Theorem 3.5. Let f ∈ SymR〈X,X∗〉. Then f ∈ Σ2R〈X,X∗〉 if and only if
there exists a positive semidefinite (PSD) matrix G satisfying

f = W ∗GW,

where W is a vector of words constructed in Algorithm 2.

Proof. If f = W ∗GW for some positive semidefinite matrix G, then we can
write G = RtR and f =

∑
i g
∗
i gi where gi denotes the i-th component of RW .

Conversely, if f ∈ Σ2R〈X,X∗〉, we first notice that using Lemma 3.1 we
can restrict candidates rc(w, i) in Step 3 of Algorithm 2 to subvector of words
V ⊆ Wd. Next we notice that using Lemma 3.2 we can do Step 4. Therefore
for the rest of the proof we need to prove that for any SOHS decomposition
f =

∑
i g
∗
i gi we can write all the monoms in all gi just with words from W .

Using Lemma 3.3, for every word w ∈ W = ∪iWgi there exists word v ∈ 〈X,X∗〉
such that (vw)∗vw ∈ Wf . So w is a right chip of some word of the form u∗u
and therefore w ∈W .

We implemented Algorithm 2 in NCSOStools with procedure NSsos.

Example 3.6. Let us return to Example 2.10

f = X∗X−X∗X5Y 10(X∗)5−X5(Y ∗)10(X∗)5X+X5(Y ∗)10(X∗)5X5Y 10(X∗)5,

where we saw that Wd has 421−1
3 elements and let us look at how we can

considerably reduce this vector with Algorithm 2 (Newton NS chip method).
The only words in NS polynomial f that are of the form w∗w are X∗X and
X5(Y ∗)10(X∗)5X5Y 10(X∗)5. So we need to look at all right chips of words X
and X5Y 10(X∗)5. They have 22 right chips and using Lemma 3.1 we delete 1
from this set of candidates. In Step 4 we realize that aXX∗ = 0 and that XX∗

has a unique decomposition in W , so we can delete X∗ from W . Repeating
this observation on other words from W we delete all but X and X5Y 10(X∗)5

which leads us to exactly minimum needed vector of words

W =
[
X X5Y 10(X∗)5

]t
.

Solving (SOHSSDP) returns the Gram matrix

G =

[
1 −1
−1 1

]
=
[
1 −1

]t [
1 −1

]
and therefore

f =
(
X −X5Y 10(X∗)5

)∗(
X −X5Y 10(X∗)5

)
∈ Σ2R〈X,X∗〉.

Look at Example 4.2 for use of NCSOStools on this NS polynomial f .

4. NCSOStools and NS polynomials

NCSOStools is an open source Matlab toolbox freely available at
http://ncsostools.fis.unm.si/

which we have developed for

(1) symbolic manipulation with polynomials in non-commuting variables;
(2) constructing and solving semidefinite programs for SOHS decomposition of

polynomials in non-commuting variables.

http://ncsostools.fis.unm.si/

SOHS DECOMPOSITION OF NS POLYNOMIALS USING NCSOSTOOLS 11

Before version 1.8 only symmetric variables were supported. As an add-on to
this paper a new version 1.8 was developed to handle non-symmetric variables
too. At the time of writing to the best of our knowledge this is the only Matlab
toolbox with the described functionality. For solving constructed semidefinite
programs different SDP solvers are supported, like SeDuMi [Stu99], SDPT3
[TTT12] and SDPA [YFK03].

For a start let us do an example with some newly developed basic operations
for symbolic manipulation of non-commutative polynomials in non-symmetric
variables (NS polynomials).

Example 4.1. First we must define non-commutative non-symmetric variables.
For this we use a command NSvars.

>> NSvars x y

As usually in Matlab we used ’ for involution. NSvars created four variables
X,x, Y, y, where X = x∗ and Y = y∗. Now we can form NS polynomials:

>> f = x*Y*x^2 + 3*X*y;

>> g = -2*y*X*Y;

Elementary operations are implemented in the standard Matlab manner.

>> f + g, f - g, f*g, -f, g^2, g’*g, f’

ans = 3*X*y + x*Y*x^2 - 2*y*X*Y

ans = 3*X*y + x*Y*x^2 + 2*y*X*Y

ans = -6*X*y^2*X*Y - 2*x*Y*x^2*y*X*Y

ans = -3*X*y - x*Y*x^2

ans = 4*y*X*Y*y*X*Y

ans = 4*y*x*Y*y*X*Y

ans = X^2*y*X + 3*Y*x

We can also define matrices of NS polynomials and then do elementary op-
erations.

>> A = [x - y*X, x + 1; x^2 - x, 1 + Y]

>> B = [x*Y*x, 3*y*X]

>> B*A, A*A, A.*A, B’, trace(A), diag(A), triu(A), [sum(A);B]

Throughout this paper the main question was how we can efficiently decide
whether a given NS polynomial can be written as a SOHS. This can be answered
using Algorithm 2 from this paper with the command NSsos.

Example 4.2. Let

f = X∗X −X∗X5Y 10(X∗)5−X5(Y ∗)10(X∗)5X +X5(Y ∗)10(X∗)5X5Y 10(X∗)5

from the Example 2.10. Command NSsos has many optional parameters, for
example with parameter .precision we can set the smallest value that is con-
sidered to be nonzero in numerical calculations.

>> NSvars x y

>> f=X*x-X*x^5*y^10*X^5-x^5*Y^10*X^5*x+x^5*Y^10*X^5*x^5*y^10*X^5;

>> params.precision = 1e-6;

>> [IsSohs,G,W,sohs,gsos] = NSsos(f,params)

Value

IsSohs = 1

12 KRISTIJAN CAFUTA

means f ∈ Σ2R〈X,X∗〉.
G = 1.0000 -1.0000

-1.0000 1.0000

is a Gram matrix of a NS polynomial f for a vector of words

W =

’x’

’x*x*x*x*x*y*y*y*y*y*y*y*y*y*y*X*X*X*X*X’

and

sohs = x-x^5*y^10*X^5

is a vector of NS polynomials gi (in our case just one NS polynomial), for which

gsos :=
∑
i

g∗i gi = f

holds.

gsos = X*x-X*x^5*y^10*X^5-x^5*Y^10*X^5*x+x^5*Y^10*X^5*x^5*y^10*X^5

Example 4.3. Let us end with one more example where we present some of
the output of the procedure NSsos.

>> NSvars x y

>> f = Y*x^5*X*x*X^5*y-Y*x^5*X*y*X-x*Y*x*X^5*y+x*Y*x*X*y*X+x*Y*y*X;

>> params.precision = 1e-6;

>> [IsSohs,G,W,sohs,gsos] = NSsos(f,params)

***** NCsostools: module NSsos started *****

Input polynomial has (max) degree 14 and min degree 4.

Detected 5 monomials in 2 nonsymmetric variables.

There are 357913941 monomials in 2 nonsymmetric variables of degree

at most 14.

There are 357913856 monomials in 2 nonsymmetric variables of degree

at most 14 and at least 4.

After Newton Chip Method keeping 3 monomials.

Number of linear constraints: 6.

Starting SDP solver ...

Computing SOHS decomposition ... done.

Found SOHS decomposition with 2 factors.

*************** Polynomial is SOHS ***************

IsSohs = 1

G =

1.0000 -0.0000 0.0000

-0.0000 1.0000 -1.0000

0.0000 -1.0000 1.0000

W =

’X*y*X’

’x*X*X*X*X*X*y’

’y*X’

SOHS DECOMPOSITION OF NS POLYNOMIALS USING NCSOSTOOLS 13

sohs =

X*y*X

x*X^5*y-y*X

gsos = Y*x^5*X*x*X^5*y-Y*x^5*X*y*X-x*Y*x*X^5*y+x*Y*x*X*y*X+x*Y*y*X

5. Conclusion

In this paper we are dealing with a problem whether a given non-commutative
polynomial in non-symmetric variables (NS polynomial) can be written as a
sum of Hermitian squares. First we present a theoretical way to find such a
decomposition - the Gram matrix method. This is a special case of a semi-
definite feasibility problem, which can unfortunately easily exceed manageable
size of SDP solvers. In Chapter 3 we therefore introduce a generalization of
the augmented Newton chip method [KP10] from symmetric to non-symmetric
variables, which replaces the vector of needed words for SDP solver by a usually
much smaller vector. The proposed method was implemented and published in
the new version of the open source Matlab toolbox NCSOStools which fills a
rather large gap in the existing software (dealing with non-symmetric variables
and matrices). We also include numerous examples throughout the paper to il-
lustrate the theory and our results. We conclude with the demonstration of how
to use non-symmetric variables (NSvars) and the proposed method (procedure
NSsos) in the computer algebra system NCSOStools.

Acknowledgments. The author thanks both anonymous referees for helpful
suggestions.

14 KRISTIJAN CAFUTA

References

[AL12] M.F. Anjos and J.B. Lasserre. Handbook of Semidefinite, Conic and Polynomial
Optimization: Theory, Algorithms, Software and Applications, volume 166 of
International Series in Operational Research and Management Science. Springer,
2012.

[BCKP13a] S. Burgdorf, K. Cafuta, I. Klep, and J. Povh. Algorithmic aspects of sums
of hermitian squares of noncommutative polynomials. Comput. Optim. Appl.,
55(1):137–153, 2013.

[BCKP13b] S. Burgdorf, K. Cafuta, I. Klep, and J. Povh. The tracial moment problem and
trace-optimization of polynomials. Math. Program., 137(1):557–578, 2013.

[BGFB94] S. Boyd, L. El Ghaoui, E. Feron, and V. Balakrishnan. Linear Matrix Inequalities
in System and Control Theory. Studies in Applied Mathematics. SIAM, 1994.

[BGSV12] C. Bachoc, D. C. Gijswijt, A. Schrijver, and F. Vallentin. Invariant semidefinite
programs. In Handbook on semidefinite, conic and polynomial optimization, vol-
ume 166 of Internat. Ser. Oper. Res. Management Sci., pages 219–269. Springer,
New York, 2012.

[BKP16] S. Burgdorf, I. Klep, and J. Povh. Optimization of polynomials in non-commuting
variables. SpringerBriefs in Mathematics. Springer, [Cham], 2016.

[Caf13] K. Cafuta. On matrix algebras associated to sum-of-squares semidefinite pro-
grams. Linear and Multilinear Algebra, 61(11):1496–1509, 2013.

[Cim10] J. Cimprič. A method for computing lowest eigenvalues of symmetric polyno-
mial differential operators by semidefinite programming. J. Math. Anal. Appl.,
369(2):443–452, 2010.

[CKP10] K. Cafuta, I. Klep, and J. Povh. A note on the nonexistence of sum of squares cer-
tificates for the Bessis-Moussa-Villani conjecture. J. Math. Phys., 51(8):083521,
10, 2010.

[CKP11] K. Cafuta, I. Klep, and J. Povh. NCSOStools: a computer algebra system for
symbolic and numerical computation with noncommutative polynomials. Optim.
Methods Softw., 26(3):363–380, 2011. http://ncsostools.fis.unm.si/.

[CKP12] K. Cafuta, I. Klep, and J. Povh. Constrained polynomial optimization problems
with noncommuting variables. SIAM J. Optim., 22(2):363–383, 2012.

[CKP15] K. Cafuta, I. Klep, and J. Povh. Rational sums of hermitian squares of free
noncommutative polynomials. Ars Math. Contemp., 9(2):243–259, 2015.

[CLR95] M.D. Choi, T.Y. Lam, and B. Reznick. Sums of squares of real polynomials. In
K-theory and algebraic geometry: connections with quadratic forms and division
algebras, volume 58 of Proc. Sympos. Pure Math., pages 103–126. AMS, Provi-
dence, RI, 1995.

[dHMP08] M.C. de Oliveira, J.W. Helton, S. McCullough, and M. Putinar. Engineering
systems and free semi-algebraic geometry. In Emerging applications of algebraic
geometry, volume 149 of IMA Vol. Math. Appl., pages 17–61. Springer, New York,
2008.

[Goe97] M. X. Goemans. Semidefinite programming in combinatorial optimization. Math.
Program., 79(1-3, Ser. B):143–161, 1997.

[GP04] K. Gatermann and P.A. Parrilo. Symmetry groups, semidefinite programs, and
sums of squares. J. Pure Appl. Algebra, 192(1-3):95–128, 2004.

[HdKR02] M. Halická, E. de Klerk, and C. Roos. On the convergence of the central path in
semidefinite optimization. SIAM J. Optim., 12(4):1090–1099, 2002.

[Hel02] J.W. Helton. “Positive” noncommutative polynomials are sums of squares. Ann.
of Math. (2), 156(2):675–694, 2002.

[HJ85] R.A. Horn and C.R. Johnson. Matrix analysis. Cambridge University Press, Cam-
bridge, 1985.

[HN12] J.W. Helton and J. Nie. A semidefinite approach for truncated K-moment prob-
lems. Found. Comput. Math., 12(6):851–881, 2012.

[KP10] I. Klep and J. Povh. Semidefinite programming and sums of hermitian squares of
noncommutative polynomials. J. Pure Appl. Algebra, 214:740–749, 2010.

http://ncsostools.fis.unm.si/

SOHS DECOMPOSITION OF NS POLYNOMIALS USING NCSOSTOOLS 15

[KP16] I. Klep and J. Povh. Constrained trace-optimization of polynomials in freely
noncommuting variables. J. Global Optim., 64(2):325–348, 2016.

[KS08a] I. Klep and M. Schweighofer. Connes’ embedding conjecture and sums of Hermit-
ian squares. Adv. Math., 217(4):1816–1837, 2008.

[KS08b] I. Klep and M. Schweighofer. Sums of Hermitian squares and the BMV conjecture.
J. Stat. Phys, 133(4):739–760, 2008.

[Las01] J.B. Lasserre. Global optimization with polynomials and the problem of moments.
SIAM J. Optim., 11(3):796–817, 2000/01.

[Las09] J.B. Lasserre. Moments, Positive Polynomials and Their Applications, volume 1
of Imperial College Press Optimization Series. Imperial College Press, London,
2009.

[Lau09] M. Laurent. Sums of squares, moment matrices and optimization over polyno-
mials. In Emerging applications of algebraic geometry, volume 149 of IMA Vol.
Math. Appl., pages 157–270. Springer, New York, 2009.

[Mar08] M. Marshall. Positive polynomials and sums of squares, volume 146 of Mathemat-
ical Surveys and Monographs. American Mathematical Society, Providence, RI,
2008.

[McC01] S. McCullough. Factorization of operator-valued polynomials in several non-
commuting variables. Linear Algebra Appl., 326(1-3):193–203, 2001.

[Mit] H. Mittelman. Website. http://plato.asu.edu/sub/pns.html.
[MP05] S. McCullough and M. Putinar. Noncommutative sums of squares. Pacific J.

Math., 218(1):167–171, 2005.
[Nie09] J. Nie. Sum of squares method for sensor network localization. Comput. Optim.

Appl., 43(2):151–179, 2009.
[Nie14] J. Nie. Optimality conditions and finite convergence of Lasserre’s hierarchy. Math.

Program., 146(1-2):97–121, 2014.
[Par00] P. Parrilo. Structured semidefinite programs and semialgebraic geometry methods

in robustness and optimization. PhD thesis, California Institute of Technology,
2000.

[Par03] P.A. Parrilo. Semidefinite programming relaxations for semialgebraic problems.
Math. Program., 96(2, Ser. B):293–320, 2003.

[PNA10] S. Pironio, M. Navascués, and A. Aćın. Convergent relaxations of polynomial op-
timization problems with noncommuting variables. SIAM J. Optim., 20(5):2157–
2180, 2010.

[PW98] V. Powers and T. Wörmann. An algorithm for sums of squares of real polynomials.
J. Pure Appl. Algebra, 127(1):99–104, 1998.

[Rez78] B. Reznick. Extremal PSD forms with few terms. Duke Math. J., 45(2):363–374,
1978.

[RFP10] B. Recht, M. Fazel, and P.A. Parrilo. Guaranteed minimum-rank solutions of
linear matrix equations via nuclear norm minimization. SIAM Rev., 52(3):471–
501, 2010.

[Sho91] N. Z. Shor. Dual quadratic estimates in polynomial and boolean programming.
Ann. Oper. Res., 25(1-4):163–168, 1991.

[Stu99] J.F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimization over sym-
metric cones. Optim. Methods Softw., 11/12(1-4):625–653, 1999. http://sedumi.
ie.lehigh.edu/.

[TTT12] K.C. Toh, M.J. Todd, and R.H. Tütüncü. On the implementation and usage
of SDPT3—a Matlab software package for semidefinite-quadratic-linear pro-
gramming, version 4.0. In Handbook on semidefinite, conic and polynomial op-
timization, volume 166 of Internat. Ser. Oper. Res. Management Sci., pages
715–754. Springer, New York, 2012. http://www.math.nus.edu.sg/~mattohkc/
sdpt3.html.

[WSV00] H. Wolkowicz, R. Saigal, and L. Vandenberghe. Handbook of Semidefinite Pro-
gramming. Kluwer, 2000.

http://plato.asu.edu/sub/pns.html
http://sedumi.ie.lehigh.edu/
http://sedumi.ie.lehigh.edu/
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

16 KRISTIJAN CAFUTA

[YFK03] M. Yamashita, K. Fujisawa, and M. Kojima. Implementation and evaluation of
SDPA 6.0 (semidefinite programming algorithm 6.0). Optim. Methods Softw.,
18(4):491–505, 2003. http://sdpa.sourceforge.net/.

Kristijan Cafuta, Univerza v Ljubljani, Fakulteta za elektrotehniko, Labora-
torij za uporabno matematiko in statistiko, Tržaška 25, 1000 Ljubljana, Slovenia

E-mail address: kristijan.cafuta@fe.uni-lj.si

http://sdpa.sourceforge.net/

SOHS DECOMPOSITION OF NS POLYNOMIALS USING NCSOSTOOLS 17

NOT FOR PUBLICATION

Contents

1. Introduction 1
1.1. Notation: NS polynomials 2
1.2. Semidefinite programming 2
2. Sums of Hermitian squares of NS polynomials 3
2.1. Positive semidefinite NS polynomials 3
2.2. Sums of Hermitian squares and SDP 6
3. Newton NS chip method 8
4. NCSOStools and NS polynomials 10
5. Conclusion 13
Acknowledgments 13
References 14
Index 17

	1. Introduction
	1.1. Notation: NS polynomials
	1.2. Semidefinite programming

	2. Sums of Hermitian squares of NS polynomials
	2.1. Positive semidefinite NS polynomials
	2.2. Sums of Hermitian squares and SDP

	3. Newton NS chip method
	4. NCSOStools and NS polynomials
	5. Conclusion
	Acknowledgments

	References
	Index

