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Abstract. An algorithm for finding sums of hermitian squares decomposi-
tions for polynomials in noncommuting variables is presented. The algorithm
is based on the “Newton chip method”, a noncommutative analog of the clas-
sical Newton polytope method, and semidefinite programming.

1. Introduction

1.1. Notation. We write N := {1, 2, . . . }, R for the sets of natural and real
numbers. Let 〈X̄〉 be the monoid freely generated by X̄ := (X1, . . . , Xn), i.e.,
〈X̄〉 consists of words in the n noncommuting letters X1, . . . , Xn (including the
empty word denoted by 1).

We consider the algebra R〈X̄〉 of polynomials in n noncommuting variables
X̄ = (X1, . . . , Xn) with coefficients from R. The elements of R〈X̄〉 are linear
combinations of words in the n letters X̄ and are called NC polynomials. The
length of the longest word in an NC polynomial f ∈ R〈X̄〉 is the degree of f
and is denoted by deg f . We shall also consider the degree of f in Xi, degi f .
Similarly, the length of the shortest word appearing in f ∈ R〈X̄〉 is called the
min-degree of f and denoted by mindeg f . Likewise, mindegi f is introduced. If
the variable Xi does not occur in some monomial in f , then mindegi f = 0. For
instance, if f = X3

1 + 2X1X2X3 −X2
1X

2
4 , then

deg f = 4, deg1 f = 3, deg2 f = deg3 f = 1, deg4 f = 2,

mindeg f = 3, mindeg1 f = 1, mindeg2 f = mindeg3 f = mindeg4 f = 0.

An element of the form aw where 0 6= a ∈ R and w ∈ 〈X̄〉 is called a monomial
and a its coefficient. Hence words are monomials whose coefficient is 1.
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We equip R〈X̄〉 with the involution ∗ that fixes R ∪ {X̄} pointwise and thus
reverses words, e.g.

(X1X2 −X2
1X3)

∗ = X2X1 −X3X
2
1 .

Hence R〈X̄〉 is the ∗-algebra freely generated by n symmetric letters. Let Sym R〈X̄〉
denote the set of all symmetric elements, that is,

Sym R〈X̄〉 = {f ∈ R〈X̄〉 | f = f ∗}.

An NC polynomial of the form g∗g is called a hermitian square and the set of all
sums of hermitian squares will be denoted by Σ2. Clearly, Σ2 ( Sym R〈X̄〉. For
example,

X1X2 −X2X1 6∈ Sym R〈X̄〉, X1X2X1 ∈ Sym R〈X̄〉 \ Σ2,

1− 2X1 + 2X2
1 + X1X2 + X2X1 −X2

1X2 −X2X
2
1 + X2X

2
1X2 =

(1−X1 + X1X2)
∗(1−X1 + X1X2) + X2

1 ∈ Σ2.

The involution ∗ extends naturally to matrices (in particular, to vectors) over
R〈X̄〉. For instance, if V = (vi) is a (column) vector of NC polynomials vi ∈
R〈X̄〉, then V ∗ is the row vector with components v∗i . We shall also use V t to
denote the row vector with components vi.

Occasionally one needs to work with the free ∗-algebra R〈X̄, X̄∗〉, i.e., the free
∗-algebra freely generated by n (nonsymmetric) NC variables X̄, or with the
mixed case where some of the variables are symmetric and some are not. All
of the notions introduced above in the case of symmetric variables have natural
counterparts in R〈X̄, X̄∗〉. For the sake of exposition, we have restricted ourselves
to R〈X̄〉 but the interested reader will have no problems adapting the results to
R〈X̄, X̄∗〉.

1.2. Motivation and Contribution. If f ∈ R〈X̄〉 is a sum of hermitian squares
and we substitute self-adjoint matrices A1, . . . , An of the same size for the vari-
ables X̄, then the resulting matrix f(A1, . . . , An) is positive semidefinite. Recall
that a matrix A is called positive semidefinite if it is self-adjoint and 〈Av, v〉 ≥ 0
for all vectors v. Equivalently: A is self-adjoint and all of its eigenvalues are
nonnegative. For self-adjoint matrices A and B of the same size, we write A � B
to express that A−B is positive semidefinite, i.e.,

A � B ⇔ 〈Av, v〉 ≥ 〈Bv, v〉 for all vectors v.

Helton [Hel02] proved (a slight variant of) the converse of the above observa-
tion: If f ∈ R〈X̄〉 and f(A1, . . . , An) � 0 for all self-adjoint matrices Ai of the
same size, then f is a sum of hermitian squares. For a beautiful exposition, we
refer the reader to [MP05].
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Together with coworkers Helton pursued this line of research further, studied
positivity and convexity of NC polynomials and gave applications to control the-
ory, optimization, systems engineering, etc.; see [dOHMP08] for a nice survey
of these beginnings of free semialgebraic geometry. The first author in [KS08a]
connected sums of hermitian squares of NC polynomials to an old open problem
of Connes on von Neumann algebras, and, somewhat related, found applications
to mathematical physics [KS08b]. Many of these results were obtained with the
aid of computer programs written in an ad-hoc manner.

Despite the fast rise of free semialgebraic geometry, there seems to be no pub-
lished account or software implementation of an “optimal” algorithm for comput-
ing (or determining existence) of sums of hermitian squares (SOHS) decompo-
sitions of NC polynomials. The main contribution of this article is to present
such an algorithm. We review the Gram matrix method to determine whether a
given NC polynomial has a SOHS decomposition and how it naturally relates to
semidefinite programming (SDP), see §2. In the Gram matrix method the size
of the underlying semidefinite program grows very fast (exponentially with the
degree of the NC polynomial) although the number of monomials one actually
needs in the SOHS decomposition is always polynomial in the degree of the NC
polynomial and the number of monomials in the NC polynomial. More precisely,
for a given f ∈ Sym R〈X̄〉, at most k deg f

2
monomials are needed, where k is the

number of symmetric monomials in f . This reduction is presented in §3 and called
the Newton chip method. We shall also demonstrate that our method is tight,
i.e., gives the exact number of monomials for some NC polynomials. Finally, in
§4, §5 we discuss the duality properties of the constructed semidefinite programs
and give an application of SOHS decompositions.

2. Sums of hermitian squares

2.1. Sums of hermitian squares and Gram matrices. The core of the Gram
matrix method is given by the following proposition (cf. [Hel02, §2.2] or [MP05,
Theorem 2.1]), the noncommutative version of the classical result due to Choi,
Lam and Reznick ([CLR95, §2]; see also [Par03, PW98]). The easy proof is
included for the sake of completeness.

Proposition 2.1. Suppose f ∈ Sym R〈X̄〉 is of degree ≤ 2d. Then f ∈ Σ2 if and
only if there exists a positive semidefinite matrix G satisfying

f = W ∗
d GWd, (1)

where Wd is a vector consisting of all words in 〈X̄〉 of degree ≤ d.
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Conversely, given such a positive semidefinite matrix G with rank r, one can
construct NC polynomials g1, . . . , gr ∈ R〈X̄〉 of degree ≤ d such that

f =
r∑

i=1

g∗i gi. (2)

The matrix G is called a Gram matrix for f .

Proof. If f =
∑

i g
∗
i gi ∈ Σ2, then deg gi ≤ d for all i as the highest degree terms

cannot cancel. Indeed, otherwise by extracting all the appropriate highest degree
terms hi with degree > d from the gi we would obtain hi ∈ R〈X̄〉 \ {0} satisfying∑

i

h∗i hi = 0. (3)

By substituting self-adjoint matrices for variables in (3), we see that each hi

vanishes for all these substitutions. But then the nonexistence of (dimension-
free) polynomial identities for tuples of self-adjoint matrices (cf. [Row80, §2.5,
§1.4]) implies hj = 0 for all j. Contradiction.

Hence we can write gi = Gt
iWd, where Gt

i is the (row) vector consisting of the
coefficients of gi. Then g∗i gi = W ∗

d GiG
t
iWd and setting G :=

∑
i GiG

t
i, (1) clearly

holds.
Conversely, given a positive semidefinite G ∈ RN×N of rank r satisfying (1),

write G =
∑r

i=1 GiG
t
i for Gi ∈ RN×1. Defining gi := Gt

iWd yields (2).

Example 2.2. In this example we consider NC polynomials in 2 variables which
we denote by X, Y . Let

f = 1−2X +X2 +X4 +Y 2 +Y 4−XY 3 +X3Y +Y X3−Y 3X +XY 2X +Y X2Y.

A Gram matrix for f is given by

G =


1 −1 0 0 0 0 0
−1 1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 −1
0 0 0 0 0 −1 1

 ,

if the word vector is

W2 =
[

1 X Y X2 XY Y X Y 2
]t

.

G is positive semidefinite as is easily seen from its characteristic polynomial or
by observing that G = CtC for

C =

[
1 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 −1

]
.

From

CW2 =
[

1−X Y X2 + XY Y X − Y 2
]t
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it follows that

f = (1−X)2 + Y 2 + (X2 + XY )∗(X2 + XY ) + (Y X − Y 2)∗(Y X − Y 2) ∈ Σ2.

Note that in this example all monomials from W2 appear in the SOHS decompo-
sition of f .

Another Gram matrix for f is given by

G =


1 −1 0 1

2
0 0 0

−1 0 0 0 0 0 0
0 0 1 0 0 0 0
1
2

0 0 1 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 −1
0 0 0 0 0 −1 1

 ,

is obviously not positive semidefinite and hence does not give rise to a SOHS
decomposition.

Proposition 2.3. Suppose h ∈ Sym R〈X̄〉 is homogeneous of degree 2d and let
Vd be a vector consisting of all words in 〈X̄〉 of degree d.

(a) h has essentially a unique Gram matrix, i.e., there is a unique self-adjoint
matrix G satisfying

h = V ∗
d GVd. (4)

(b) h ∈ Σ2 if and only if G in (4) is positive semidefinite.

Proof. (a) follows from the fact that every word of degree 2d can be written
uniquely as a product of two words of degree d.

For (b) suppose h ∈ Σ2. In a sum of hermitian squares decomposition of h
we may leave out all monomials of degree 6= d (the lowest, resp. highest degree
terms cannot cancel), hence a desired positive semidefinite G exists (cf. proof of
Proposition 2.1). The converse is obvious.

For an arbitrary f ∈ R〈X̄〉 the Gram matrix is not unique, hence determining
whether f ∈ Σ2 amounts to finding a positive semidefinite Gram matrix from the
affine set of all self-adjoint Gram matrices for f . Problems like this can be (in
theory) solved exactly using quantifier elimination [BPR06] as has been suggested
in the commutative case by Powers and Wörmann [PW98]. However, this only
works for problems of small size, so a numerical approach is needed in practice.
Thus we turn to semidefinite programming.

2.2. Semidefinite programming. Semidefinite programming (SDP) is a sub-
field of convex optimization concerned with the optimization of a linear objective
function over the intersection of the cone of positive semidefinite matrices with
an affine space. More precisely, given self-adjoint matrices C, A1, . . . , Am of the
same size over R and a vector b ∈ Rm, we formulate a semidefinite program in
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standard primal form (in the sequel we refer to problems of this type by PSDP)
as follows:

inf 〈C, G〉
s. t. 〈Ai, G〉 = bi, i = 1, . . . ,m

G � 0.
(PSDP)

Here 〈·, ·〉 stands for the standard scalar product of matrices: 〈A, B〉 = tr(B∗A).
The dual problem to PSDP is the semidefinite program in the standard dual form

sup 〈b, y〉
s. t.

∑
i yiAi � C.

(DSDP)

Here y ∈ Rm and the difference C −
∑

i yiAi is usually denoted by Z.
The importance of semidefinite programming was spurred by the development

of practically efficient methods to obtain (weakly) optimal solutions. More pre-
cisely, given an ε > 0 we can obtain by interior point methods an ε-optimal
solution with polynomially many iterations, where each iteration takes polyno-
mially many real number operations, provided that both PSDP and DSDP have
non-empty interiors of feasible sets and we have good initial points. The variables
appearing in these polynomial bounds are the size s of the matrix variable, the
number m of linear constraints in PSDP and log ε (cf. [WSV00, Ch. 10.4.4]).

Note, however, that the complexity to obtain (strong) solutions of PSDP or
DSDP is still a fundamental open question in semidefinite optimization [PK97].
The difficulties arise from the fact that semidefinite programs with rational input
data may have irrational optimal value or/and optimal solution which are doubly
exponential, hence have exponential length in any numerical system coding. Ra-
mana [Ram97] proved that the decision problem whether there exists a feasible
solution of PSDP or DSDP - the so-called SDP feasibility problem FSDP - is nei-
ther in NP nor in co-NP unless NP = co-NP, if we consider the Turing machine
complexity models, and FSDP is in NP ∩ co-NP, if we consider the real number
model. For more details about the complexity bounds for linear, semidefinite
programming and other convex quadratic programming problems we refer the
reader to [BTN01].

There exist several open source packages which can efficiently find ε-optimal
solutions in practice for most of the problems. If the problem is of medium size
(i.e., s ≤ 1000 and m ≤ 10.000), these packages are based on interior point
methods, while packages for larger semidefinite programs use some variant of
the first order methods (see [Mit09] for a comprehensive list of state of the art
SDP solvers and also [PRW06, MPRW09]). Nevertheless, once s ≥ 3000 or
m ≥ 250000, the problem must share some special property otherwise state-of-
the art solvers will fail to solve it for complexity reasons.
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2.3. Sums of hermitian squares and SDP. In this subsection we present a
conceptual algorithm based on SDP for checking whether f ∈ Sym R〈X̄〉 is a sum
of hermitian squares. Following Proposition 2.1 we must determine whether there
exists a positive semidefinite matrix G such that f = W ∗

d GWd, where Wd is the
vector of all words of degree ≤ d. This is a semidefinite feasibility problem in
the matrix variable G, where the constraints 〈Ai, G〉 = bi are implied by the fact
that for each product of monomials w ∈ W2d = {p∗q | p, q ∈ Wd},∑

p,q∈Wd
p∗q=w

Gp,q = aw, (5)

where aw is the coefficient of w in f (aw = 0 if the monomial w does not appear
in f).

Input: f ∈ Sym R〈X̄〉 with deg f ≤ 2d, f =
∑

w∈〈X̄〉 aww,, where aw ∈ R.

Step 1: Construct Wd.
Step 2: Construct data Ai, b, C corresponding to the SDP.
Step 3: Solve the SDP to obtain G. If the SDP is not feasible, then f 6∈ Σ2;

stop.
Step 4: Compute the Cholesky decomposition G = R∗R.

Output: Sum of hermitian squares decomposition of f : f =
∑

i g
∗
i gi, where

gi denotes the i-th component of RWd.

Algorithm 1: The Gram matrix method for finding SOHS decompositions

Sums of hermitian squares and f are symmetric, and two symmetric polyno-
mials are equal if and only if all of their “symmetrized coefficients” (i.e., aw +aw∗)
coincide, hence equations (5) can be rewritten as∑

u,v∈Wd
u∗v=w

Gu,v +
∑

u,v∈Wd
v∗u=w∗

Gv,u = aw + aw∗ ∀w ∈ W2d, (6)

or equivalently,

〈Aw, G〉 = aw + aw∗ ∀w ∈ W2d, (7)

where Aw is the self-adjoint matrix defined by

(Aw)u,v =


2; if u∗v ∈ {w,w∗}, w∗ = w,
1; if u∗v ∈ {w,w∗}, w∗ 6= w,
0; otherwise.

As we are interested in an arbitrary positive semidefinite G = [Gu,v]u,v∈W sat-
isfying the constraints (7), we can choose the objective function freely. However,
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in practice one prefers solutions of small rank leading to shorter SOHS decompo-
sitions. Hence we minimize the trace, a commonly used heuristic for matrix rank
minimization (cf. [RFP07]). Therefore our SDP in the primal form is as follows:

inf 〈I, G〉
s. t. 〈Aw, G〉 = aw + aw∗ ∀w ∈ W2d

G � 0.
(SOHSSDP)

Remark 2.4. The size of G in (SOHSSDP) is

N(n, d) :=
d∑

k=0

nk =
nd+1 − 1

n− 1
.

Thus N(n, d) grows exponentially with the polynomial degree d and easily exceeds
the size manageable by the state of the art SDP solvers, which is widely accepted
to be of order 1000. This implies, for example, that the above algorithm can only
handle NC polynomials in two variables if they are of degree < 10. As we point
out later, our method is able to work with much larger NC polynomials.

Example 2.5. Let

f = X2 −X10Y 20X11 −X11Y 20X10 + X10Y 20X20Y 20X10. (8)

The size of a Gram matrix G for f from Proposition 2.1 is 241 − 1 and is too big
for today’s SDP solvers. On the other hand, it is easy to see that

f = (X −X10Y 20X10)∗(X −X10Y 20X10) ∈ Σ2.

The polynomial f is sparse and an improved SDP for testing whether (sparse)
polynomials are sums of hermitian squares will be given below.

The complexity of solving an SDP is also determined by the number of equa-
tions (7), which we denote by m. There are exactly

m = card{w ∈ W2d | w∗ = w}+
1

2
card{w ∈ W2d | w∗ 6= w}

such equations. Since Wd contains all words in 〈X̄〉 of degree ≤ d, we have

m > 1
2
N(n, 2d) = n2d+1−1

2(n−1)
.

For each product p∗q ∈ W2d there are t different pairs (pi, qi) such that p∗i qi =
p∗q, where t = deg(p∗q) + 1 if deg(p∗q) ≤ d, and t = 2d + 1 − deg(p∗q) if
deg(p∗q) ≥ d + 1. Note that t ≤ d + 1. Therefore the matrices Ai defining
the constraints (7) have order N(n, d) and every matrix Ai has at most d + 1
nonzero entries, if it corresponds to a symmetric monomial of f and has at most
2(d + 1) nonzero entries otherwise. Hence the matrices Ai are sparse. They are
also pairwise orthogonal with respect to the scalar product 〈·, ·〉, and even have
disjoint supports, as we now proceed to show:
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Theorem 2.6. Let {Ai | i = 1, . . . ,m} be the matrices constructed in Step 2
of Algorithm 1. If (Ai)r,s 6= 0, then (Aj)r,s = 0 for all i 6= j. In particular,
〈Ai, Aj〉 = 0 for i 6= j.

Proof. The equations in the SDP underlying the SOHS decomposition represent
the constraints that the monomials in W2d must have coefficients prescribed by
the polynomial f . Let us fix i 6= j. The matrices Ai and Aj correspond to some
monomials p∗1q1 and p∗2q2 (pi, qi ∈ Wd), respectively, and p∗1q1 6= p∗2q2. If Ai and
Aj both have a nonzero entry at position (r, s), then p∗1q1 = r∗s = p∗2q2, clearly a
contradiction.

Remark 2.7. Sparsity and orthogonality of the constraints imply that the state
of the art SDP solvers can handle about 100 000 such constraints (see e.g.
[MPRW09]), if the size of the matrix variable is about 1000. The boundary
point method introduced in [PRW06] and analyzed in [MPRW09] has turned out
to perform best for semidefinite programs of this type. It is able to use the or-
thogonality of the matrices Ai (though not the disjointness of their supports).
In the computationally most expensive steps - solving a linear system - the sys-
tem matrix becomes diagonal, so solving the system amounts to dividing by the
corresponding diagonal entries.

Since Wd contains all words in 〈X̄〉 of degree ≤ d, we have e.g. for n = 2,
d = 10 that m = N(2, 20) = 2097151 and this is clearly out of reach for all
current SDP solvers. Nevertheless, we show in the sequel that one can replace
the vector Wd in Step 1 of Algorithm 1 by a vector W , which is usually much
smaller and has at most kd

2
words, where k is the number of symmetric monomials

in f and d = deg f . Hence the size of the matrix variable G and the number of
linear constraints m end up being much smaller in general.

3. Newton chip method

We present a modification of (Step 1 of) the Gram matrix method (Algorithm
1) by implementing the appropriate noncommutative analogue of the classical
Newton polytope method [Rez78], which we call the Newton chip method.

Define the right chip function rc : 〈X̄〉 × N0 → 〈X̄〉 by

rc(w1 · · ·wn, i) := wn−i+1wn−i+2 · · ·wn

if i ≤ n and rc(w, i) = w otherwise. (In case i = 0, the empty product is defined
to be the empty word 1.) As an example, rc(X1X2X1X

2
2X1, 4) = X1X

2
2X1.

Algorithm 2 below (the Newton chip method) reduces the word vector needed
in the Gram matrix test for a sum of hermitian squares decomposition of a sym-
metric NC polynomial f .
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Input: f ∈ Sym R〈X̄〉 with deg f ≤ 2d, f =
∑

w∈〈X̄〉 aww,, where aw ∈ R.

Step 1: Define the support of f as Wf := {w ∈ 〈X̄〉 | aw 6= 0}.
Step 2: W := ∅.
Step 3: Let mi := mindegi f

2
, Mi := degi f

2
, m := mindeg f

2
, M := deg f

2
. The set of

admissible words is defined as

D := {w ∈ 〈X̄〉 | mi ≤ degi w ≤ Mi for all i, m ≤ deg w ≤ M}.
Step 4: For every w∗w ∈ Wf :
Substep 4.1 For 0 ≤ i ≤ deg w: if rc(w, i) ∈ D, then W := W ∪ {rc(w, i)}.

Output: W .

Algorithm 2: The Newton chip method

Theorem 3.1. Suppose f ∈ Sym R〈X̄〉. Then f ∈ Σ2 if and only if there exists
a positive semidefinite G satisfying

f = W ∗GW, (9)

where W is the output in vector form given by the Newton chip method.

Proof. Suppose f ∈ Σ2. In every sum of hermitian squares decomposition

f =
∑

i

g∗i gi, (10)

only words from D are used, i.e., gi ∈ spanD for every i. This follows from
the fact that the lowest and highest degree terms cannot cancel (cf. proof of
Proposition 2.1). Let W :=

⋃
iWgi

be the union of the supports of the gi. We
shall prove that W ⊆ W .

Let us introduce a partial ordering on 〈X̄〉:

w1 � w2 ⇔ ∃ i ∈ N0 : rc(w2, i) = w1.

Note: w1 � w2 if and only if there is a v ∈ 〈X̄〉 with w2 = vw1.

Claim: For every w ∈ W there exists u ∈ 〈X̄〉: w � u � u∗u ∈ Wf .
Proof: Clearly, w∗w is a word that appears in the representation of g∗i gi one
naturally gets by multiplying out without simplifying, for some i. If w∗w 6∈ Wf ,
then there are w1, w2 ∈ W \ {w} with w∗

1w2 = w∗w (appearing with a negative
coefficient so as to cancel the w∗w term). Then w � w1 or w � w2, without loss
of generality, w � w1. Continuing the same line of reasoning, but starting with
w∗

1w1, we eventually arrive at w` ∈ W with w∗
`w` ∈ Wf and w � w1 � · · · � w`.

Thus w � w` � w∗
`w` ∈ Wf , concluding the proof of the claim.

The theorem follows easily now. Since w∗
`w` ∈ Wf and w is a right chip of w`,

w ∈ W .
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Example 3.2 (Example 2.5 continued). Applying the Newton chip method to f
from (8) yields the vector

W =
[

X · · · X10 X10Y · · · X10Y 20 X10Y 20X · · · X10Y 20X10
]t

of length 40. Problems of this size are easily handled by today’s SDP solvers.
Nevertheless we provide a strengthening of our Newton chip algorithm reducing
the number of words needed further (see §4.2), in this example to 2.

Remark 3.3. In Algorithm 2 the set of admissible words D can be reduced
further by using a common generalization of the total degree and the i-degree.

Consider the v-degree degv of a monomial or polynomial in R〈X̄〉, where
v ∈ Rn

≥0 is a vector of nonnegative real “weights” and the v-degree of a mono-

mial w ∈ 〈X̄〉 is the standard scalar product between v and the exponent of
the commutative representative of w, i.e., for w = Xe1

i1
· · ·Xer

ir
the v-degree is∑r

j=1 ejvij . This extends naturally to the v-degree and min-v-degree of a poly-

nomial f ∈ R〈X̄〉. (The total degree corresponds to the v with all ones and the
individual i-degrees correspond to the standard unit vectors.)

Now D in Algorithm 2 can be replaced by

D := {w ∈ 〈X̄〉 | ∀v ∈ Rn
≥0 :

mindegv f

2
≤ degv w ≤ degv f

2
}

and the proof of Theorem 3.1 works verbatim in this new setting.

4. Implementation

4.1. SDP duality. An SDP of the form (PSDP) is said to satisfy strong duality
if the optimal values of (PSDP) and (DSDP) are the same. Note: this includes
the case where the primal (dual) problem is infeasible and the dual (primal) is
unbounded. We refer the reader to [Tod01] for more on duality properties of SDP.

A sufficient condition for strong duality is the existence of a strictly feasible
solution for at least one of the primal-dual pair of semidefinite programs, i.e.,
there exists a positive definite matrix G with 〈Ai, G〉 = bi for all i or there exists
a vector y such that Z = C −

∑
i yiAi is positive definite. In this case there is no

duality gap, that is, the optimal values of the primal and the dual are the same.
Existence of a strictly feasible solution is also known as the Slater condition.

If the primal semidefinite program has a strictly feasible solution and the dual
semidefinite problem is feasible, then both optimal values are finite and the op-
timal value of the dual is attained. An analogous statement holds if the dual has
a strictly feasible solution.

As the following example demonstrates, the Slater condition is not necessarily
satisfied on the primal side in our class of (SOHSSDP) problems.
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Example 4.1. Let f = (XY + X2)∗(XY + X2). It is homogeneous, hence there
exists a unique self-adjoint Gram matrix

G =

[
1 1
1 1

]
for f such that

f =
[

Y X X2
]
G

[
Y X X2

]∗
.

Clearly G, a rank 1 matrix, is the only feasible solution of (SOHSSDP), hence the
corresponding SDP has no strictly feasible solution on the primal side.

Nevertheless, since the objective function in our primal SDP is 〈I, G〉, the pair
y = 0, Z = I is always strictly feasible for the dual problem of (SOHSSDP) and
thus we do have the strong duality property.

Hence, when the given NC polynomial is in Σ2, the corresponding semidefinite
program (SOHSSDP) is feasible and the optimal value is attained. If there is no
strictly feasible solution then numerical difficulties might arise but state-of-the-
art SDP solvers are able to overcome them in most of the instances. When the
given NC polynomial is not in Σ2, then the semidefinite problem (SOHSSDP) is
infeasible and this might cause numerical problems as well. However, state-of-
the-art SDP solvers (such as SeDuMi [SeD09] or SDPT3 [TTT09]) are robust and
can reliably detect infeasibility for most practical problems. For more details see
[dKRT98, PT07].

4.2. Augmented Newton chip algorithm. The following simple observation
is often crucial in reducing the size of W returned by the Newton chip method.

Lemma 4.2. If there exists a constraint of the form

〈Aw, G〉 = 0

in (SOHSSDP) and Aw is a diagonal matrix (i.e., (Aw)u,u = 2 for some u ∈ W and
Aw is 0 elsewhere), then we can eliminate u from W and update the (SOHSSDP).

Proof. Indeed, such a constraint implies that Gu,u = 0 for the given u ∈ W , hence
the u-th row and column of G must be zero, since G is positive semidefinite. So
we can decrease the order of (SOHSSDP) by deleting the u-th row and column
from G.

Lemma 4.2 applies if and only if there exists a constraint 〈Aw, G〉 = 0, where
w = u∗u for some u ∈ W and w 6= v∗z for all v, z ∈ W , v 6= z. Therefore we
augment the Newton chip method as shown in Algorithm 3.

Note that in Step 2 there might exist some word u ∈ W which does not
satisfy the condition initially but after deleting another u′ from W it does. We
demonstrate Algorithm 3 in the following example.
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Input: f ∈ Sym R〈X̄〉 with deg f ≤ 2d, f =
∑

w∈〈X̄〉 aww,, where aw ∈ R.

Step 1: Compute W by the Newton chip method (Algorithm 2).
Step 2: While there exists u such that au∗u = 0 and u∗u 6= v∗z for every pair

v, z ∈ W , v 6= z: delete u from W .

Output: W .

Algorithm 3: The augmented Newton chip method

Example 4.3 (Example 2.5 continued). By applying the augmented Newton chip
method to f from (8) we reduce the vector W significantly. Note that after Step 1
also the following words are in W : X8, X9, X10. Although X18 does not appear in
f , we cannot delete X9 from W immediately since X18 = (X9)∗X9 = (X8)∗X10.
But we can delete X10 since X20 also does not appear in f and (X10)∗X10 is the
unique decomposition of X20 inside W . After deleting X10 from W we realize
that (X9)∗X9 becomes the unique decomposition of X18, hence we can eliminate
X9 too. Eventually the augmented Newton chip method returns

W =
[

X X10Y 20X10
]t

,

which is exactly the minimum vector needed for the SOHS decomposition of f .

5. An application: Optimization of NC polynomials

We implemented the Gram matrix method together with the augmented New-
ton chip method in the MATLAB software package named NCSOStools which
will be presented in detail elsewhere (see [CKP09]) and is freely available at

http://ncsostools.fis.unm.si/downloads/.

One of the main features of this package is NCsos which finds a SOHS decompo-
sition of a given polynomial, if one exists, or returns that none exists.

In this section we present a “practical” application of SOHS decompositions,
namely finding global minima of NC polynomials. (Readers interested in solv-
ing sums of squares problems for commuting polynomials are referred to one of
the great existing packages SOSTOOLS [SOS09, PPSP05], GloptiPoly [HLL09],
YALMIP [YAL09, Löf04], and SparsePOP [WKKM06].)

Unlike optimization of polynomials in commuting variables that requires a
sequence of SDPs to compute the minimum, for NC polynomials a single SDP
suffices by Helton’s theorem [Hel02]: f(A1, . . . , An) � aI for a ∈ R and for all
self-adjoint matrices Ai of the same size if and only if f − a ∈ Σ2. The largest
such a is obtained by solving the SDP

sup a
s. t. f − a ∈ Σ2.

(SDPmin)

http://ncsostools.fis.unm.si/downloads/
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Suppose f ∈ Sym R〈X̄〉 is of degree ≤ 2d. Let W be a vector consisting of all
monomials from 〈X̄〉 needed in the SOHS decomposition, i.e., W is obtained by
the (augmented) Newton chip method if f has nonzero constant term, otherwise
we modify the (augmented) Newton chip method by setting mi = m = 0 in Step
3 of Algorithm 2). Assume the first entry of W is 1. Then (SDPmin) rewrites into

sup f1 − 〈E11, F 〉
s. t. f − f1 = W ∗(F − F11E11)W

F � 0.
(SDPmin′)

(Here f1 is the constant term of f and E11 is the matrix with all entries 0 except
for the (1, 1) entry which is 1.)

In general (SDPmin) does not satisfy the Slater condition. Nevertheless:

Theorem 5.1. (SDPmin) satisfies strong duality.

Proof. Suppose f ∈ Sym R〈X̄〉 \ R is of degree ≤ 2d and bounded from below.
In particular, this implies that the highest homogeneous part of f is a sum of
hermitian squares. Let Σ2

≤2d denote the cone of all sums of hermitian squares of
degree ≤ 2d, i.e.,

Σ2
≤2d = {

t∑
i=1

g∗i gi | t ∈ N, gi ∈ R〈X̄〉 of degree ≤ d}.

Then (SDPmin) can be rewritten as:

sup a
s. t. f − a ∈ Σ2

≤2d.
(Primal)

The dual cone of Σ2
≤2d is the set of all linear maps Sym R〈X̄〉≤2d → R which are

nonnegative on Σ2
≤2d. (We use (Sym)R〈X̄〉≤2d to denote the set of all (symmetric)

NC polynomials of degree ≤ 2d.)

Fact: The cone Σ2
≤2d is closed in Sym R〈X̄〉≤2d.

Proof: This is a well-known variant of the analogous claim in the commutative
setting. See e.g. [MP05, Proposition 3.4] for a proof.

Let us now return to the SDP. To construct the dual problem to (Primal), we
proceed as follows. (Primal) and its equivalent form (SDPmin′) can be with the
help of the matrices Aw introduced below equation (7) on page 7, written as:

sup f1 − 1
2
〈A1, F 〉

s. t. fw + fw∗ = 〈Aw, F 〉 ∀w ∈ W2d \ {1}
F � 0.

(Primal’)
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Here W2d is the set of all words of degree ≤ 2d and 2E11 = A1. Hence the dual
SDP to (Primal’) is

inf f1 +
∑

w∈U2d\{1}
yw(fw + fw∗)

s. t. 1
2
A1 +

∑
w∈U2d\{1}

ywAw � 0,
(Dual’)

where U2d is a set consisting of one words out of each pair (w,w∗) with w ∈ W2d.
Each feasible vector (yw)w of (Dual’) gives rise to a linear map L : R〈X̄〉≤2d → R
with L(1) = 1 and L(w) equals yw or yw∗ otherwise. This L satisfies L(1) = 1,
L = L ◦ ∗ and L(Σ2

≤2d) ⊆ [0,∞).
Conversely, every such L yield a vector yw = L(w), w ∈ W2d. To see why the

positivity constraint in (Dual’) holds, note that L induces a map Sym RN×N → R
by

B 7→ 〈B,
1

2
A1 +

∑
w∈U2d\{1}

ywAw〉 = L(W ∗
d BWd).

By the positivity assumption on L, this map sends positive semidefinite matri-
ces to nonnegative reals. Hence by the self-duality of the cone of all positive
semidefinite matrices, 1

2
A1 +

∑
w∈U2d\{1}

ywAw � 0.

Combining these observations we can present (Dual’) as

inf L(f)
s. t. L : Sym R〈X̄〉≤2d → R is linear

L(1) = 1
L(p∗p) ≥ 0 for all p ∈ R〈X̄〉≤d.

(Dual)

Let f and f denote the optimal value of (Primal) and (Dual), respectively. We

claim that f = f . Clearly, f ≤ f . (Dual) is always feasible (e.g. L mapping each

polynomial into its constant term is feasible), hence f < ∞.
Suppose first that (Primal) is feasible, hence f ≥ f > −∞. Note that L(f −

f) ≥ 0 for all L in the dual cone of Σ2
≤2d. This means that f − f belongs to the

closure of Σ2
≤2d, so by the Fact, f − f ∈ Σ2

≤2d. Hence also f ≥ f .

Let us consider the case when (Primal) is infeasible, i.e., f ∈ Sym R〈X̄〉≤2d

is not bounded from below. Then for every a ∈ R, f − a is not an element
of the closed convex cone Σ2

≤2d. Thus by the Hahn-Banach separation theorem,

there exists L : Sym R〈X̄〉≤2d → R satisfying L(Σ2
≤2d) ⊆ [0,∞), L(1) = 1 and

L(f) < a. As a was arbitrary, this shows that (Dual) is unbounded, hence strong
duality holds in this case as well.

Optimization of NC polynomials is implemented in our software package NC-

SOStools, where the optimal solution of (Primal) is computed by calling the
routine NCmin.
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