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Abstract. The study of matrix inequalities in a dimension-free setting is in the realm of free

real algebraic geometry (RAG). In this paper we investigate constrained trace and eigenvalue

optimization of noncommutative polynomials. We present Lasserre’s relaxation scheme for

trace optimization based on semidefinite programming (SDP) and demonstrate its convergence

properties. Finite convergence of this relaxation scheme is governed by flatness, i.e., a rank-

preserving property for associated dual SDPs. If flatness is observed, then optimizers can be

extracted using the Gelfand-Naimark-Segal construction and the Artin-Wedderburn theory

verifying exactness of the relaxation. To enforce flatness we employ a noncommutative version

of the randomization technique championed by Nie.

The implementation of these procedures in our computer algebra system NCSOStools is

presented and several examples are given to illustrate our results.

1. Introduction

Free real algebraic geometry (RAG) is a branch of the booming area of free analysis that

studies positivity of polynomials in freely noncommuting (nc) variables. In recent years free

RAG has found many applications of which we mention only three. In [HMdOP08] the authors

survey applications and connections to control, and systems engineering. Pironio, Navascués,

Aćın [PNA10] give applications to quantum physics and also consider computational aspects of

nc sum of squares. Cimprič [Cim10] uses nc sum of squares to investigate PDEs and eigenvalues

of polynomial partial differential operators.

We developed NCSOStools [CKP11] as a consequence of this recent interest in free RAG.

NCSOStools is an open source Matlab toolbox for solving nc sum of squares problems using

semidefinite programming (SDP). As a side product our toolbox implements symbolic com-

putation with nc variables in Matlab. Readers interested in sums of squares problems for

commuting polynomials are referred to one of the many existing excellent packages, such as

GloptiPoly [HLL09], SOSTOOLS [PPSP05], SparsePOP [WKK+09], or YALMIP [Löf04].
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1.1. Contribution and reader’s guide. In this article we focus on constrained trace opti-

mization of nc polynomials. We also touch upon eigenvalue optimization of nc polynomials in

Section 3, and refer the reader to [PNA10] for further details on this important topic.

We give Lasserre’s relaxation scheme [Las01] for trace optimization based on nc sum of

squares and semidefinite programming (SDP), and demonstrate its convergence properties (see

Section 5). Finite convergence of this relaxation scheme is governed by flatness, i.e., a rank-

preserving property for associated dual SDPs. If flatness is observed, then optimizers can be

extracted using the Gelfand-Naimark-Segal (GNS) construction and the Artin-Wedderburn

theory verifying and proving exactness of the relaxation. To enforce flatness we employ a

noncommutative version of the randomization technique championed by Nie [Nie14]. All this

is presented in Section 6.

The implementation of these procedures in our computer algebra system NCSOStools is

presented and several examples are given to illustrate our results.

2. Preliminaries

In this section we introduce notation and terminology used throughout the paper. For

unexplained terminology we refer the reader to [CKP12].

2.1. Notation. We shall use our standard notation for noncommutative polynomials: R〈X〉
will denote the free algebra consisting of noncommutative polynomials on X = (X1, . . . , Xn)

endowed with the involution fixing the Xj pointwise. The space of all degree ≤ d polynomials

is R〈X〉d. The free monoid on X is 〈X〉, and 〈X〉d := R〈X〉d ∩ 〈X〉. We denote the number of

words from 〈X〉d by σ(d). The column vector obtained by stacking the words from 〈X〉d using

the graded lexicographic order will be denoted by Wσ(d). Note that σ(d) = nd+1−1
n−1 .

2.2. Nc semialgebraic sets. We let Sk denote the set of all real symmetric k × k matrices,

and let S+
k be the set of all positive semidefinite k× k matrices. That is, A ∈ Sk is in S+

k iff all

its eigenalues are nonnegative. In this case we also write A � 0.

Definition 2.1. Fix a subset S = {g1, g2, . . .} ⊆ SymR〈X〉. The matricial semialgebraic set

DS associated to S is the set of all tuples A = (A1, . . . , An) ∈ Snk of symmetric k × k matrices

for k ∈ N making gi(A) positive semidefinite for every gi ∈ S. When considering tuples of

symmetric matrices of a fixed size k ∈ N, we shall use DS(k) := DS∩Snk . Likewise, the operator

semialgebraic set D∞S associated to S is the set of tuples A = (A1, . . . , An) ∈ B(H ) of bounded

self-adjoint operators on a separable infinite-dimensional Hilbert space H (e.g. H = `2(N))

making s(A) positive semidefinite for every gi ∈ S.

Remark 2.2. Clearly, DS ⊆ D∞S . On the other hand, there are examples of finite S ⊆
SymR〈X〉 with

∅ = DS ( D∞S ,

and archimedean quadratic module MS (for a definition of (archimedean) quadratic module

see e.g. [CKP12]). For concrete examples, one can start with finitely presented groups that

do not admit finite-dimensional representations, and encode the defining relations of such

http://ncsostools.fis.unm.si/
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groups. Alternately, employ the generalized Clifford algebras that admit infinite dimensional ∗-
representations but no finite-dimensional representations, e.g. algebras associated to Brändén’s

Vamos polynomial [Brä11, NT14].

2.3. Archimedean quadratic modules and a Positivstellensatz. The main existing re-

sult in the literature concerning nc polynomials (strictly) positive on D∞S is due to Helton and

McCullough [HM04]. It is a perfect generalization of Putinar’s Positivstellensatz [Put93] for

commutative polynomials.

Theorem 2.3 (Helton & McCullough [HM04, Theorem 1.2]). Let S ∪ {f} ⊆ SymR〈X〉 and

suppose that MS is archimedean. If f(A) � 0 for all A ∈ D∞S , then f ∈MS.

Remark 2.4. In general it does not suffice to test for positive definiteness of f on DS (as

opposed to D∞S ) in Theorem 2.3; cf. Remark 2.2 above. However, if DS is convex [HM04,

§2], then it is by [HM12] an LMI (linear matrix inequality) domain DL. In this case every

polynomial positive semidefinite on DL admits a weighted sum of squares certificate with

optimal degree bounds [HKM12].

2.4. Flatness. Let A ∈ Rs×s be a symmetric matrix. An extension of A is a symmetric matrix

Ã ∈ R(s+∆)×(s+∆) of the form

Ã =

[
A B

Bt C

]
for some B ∈ Rs×∆ and C ∈ R∆×∆.

Using Schur complements, Ã � 0 if and only if A � 0, and there is some Z with

B = AZ and C � ZtAZ. (1)

An extension Ã of A is flat if rankA = rank Ã, or, equivalently, if B = AZ and C = ZtAZ

for some matrix Z. For a comprehensive study of flatness in functional analysis we refer the

reader to [CF96, CF98].

If Ã � 0 we can express its deviation from flatness by computing

errflat =
‖C − ZtAZ‖F

1 + ‖C‖F + ‖ZtAZ‖F

using the Frobenius norm. Here Z is as in (1); it is easy to see that errflat is independent of

the choice of Z.

Suppose L : R〈X〉2d+2δ → R is a linear functional and let Ľ : R〈X〉2d → R denote its

restriction. We can associate to L and Ľ the Hankel matrices HL and HĽ, respectively (see

e.g. Definition 4.7 for tracial Hankel matrices or [CKP12] for more details). In block form,

HL =

[
HĽ B

Bt C

]
. (2)

If HL is flat over HĽ, we say that HL is δ-flat. Similarly we say that L is δ-flat.
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2.5. Semidefinite programming (SDP). Semidefinite programming (SDP) is a subfield of

convex optimization dealing with optimization of a linear objective function subject to linear

matrix inequality (LMI) constraints [WSV00, AL12].

In the last two decades SDP found widespread in combinatorial optimization [AL12],

in control theory [XL08] or in (commutative and noncommutative) polynomial optimization

[Las09, Lau09, PNA10] where we can construct approximation hierarchies for these problems

based on semidefinite programming. Furthermore, efficient methods for solving SDPs have

been developed, cf. [WSV00]. There exist several open source packages which can solve SDP

problems numerically (i.e., can find solution that is sufficiently close to an optimal solution). If

the problem is of medium size (i.e., the matrix variable has order less than 1000 and there are

fewer than 10000 linear constraints) then these packages are based on interior point methods,

while packages for larger semidefinite programs use some variant of the first order methods (see

e.g. [WSV00, MPRW09]). We suggest the reader to visit web page http://plato.asu.edu/

bench.html for a comprehensive benchmarks of optimization solvers, including SDP solvers,

see also [Mit03].

3. Eigenvalue Optimization of Noncommutative Polynomials

Pironio, Navascues and Acin [PNA10] have employed Theorem 2.3 to present a noncom-

mutative version of Lasserre’s [Las01, Las09] relaxation scheme for eigenvalue optimization

of nc polynomials. As in the classical case, flatness governs exactness of this scheme. That

is, if the solution to the dual semidefinite program (SDP) is flat, then the obtained opti-

mal value is indeed the minimum and one can construct optimizers [PNA10, Theorem 2].

In [CKP12, HKM12] it was shown that optimization over a convex nc semialgebraic set is

equivalent to a single SDP, and flatness can be enforced [CKP12]. Here we revisit this theme

motivated by Nie’s [Nie14] fundamental results on randomization methods forcing flatness in

polynomial optimization. We apply this to noncommutative optimization, and present theo-

retical (Theorem 3.1) and numerical evidence (Subsection 3.2) to support its effectiveness in

this context.

The main problem in eigenvalue optimization of nc polynomials can be stated as follows.

Given f ∈ SymR〈X〉 and a subset S = {g1, g2, . . .} ⊆ SymR〈X〉, compute

f? := inf
{
〈f(A)ξ, ξ〉 | A ∈ D∞S , ξ a unit vector

}
. (3)

Hence f? is the greatest lower bound on the eigenvalues of f(A) taken over all tuples A

of bounded self-adjoint operators on a separable infinite-dimensional Hilbert space (i.e., `2).

That is, (f − f?)(A) � 0 for all A ∈ D∞S , and f? is the largest real number with this property.

Following [PNA10] and [CKP12] we recall the hierarchy of primal lower bounds for f?:

f? ≥ f
(s)
sohs := sup λ

s. t. f − λ ∈MS,s,
(SPSDPeig−min)

http://plato.asu.edu/bench.html
http://plato.asu.edu/bench.html


CONSTRAINED TRACE-OPTIMIZATION OF NONCOMMUTATIVE POLYNOMIALS 5

for s ≥ d. Here deg f ≤ 2d. The corresponding hierarchy of dual problems is

L
(s)
sohs = inf L(f)

s. t. L : SymR〈X〉2s → R is linear

L(1) = 1

L(q∗q) ≥ 0 for all q ∈ R〈X〉s
L(h∗gih) ≥ 0 for all h ∈ R〈X〉di , gi ∈ S,

(DSDPeig−min)s

where we use di = bs − deg(gi)/2c. Letting Gf denote a Gram matrix for f , (DSDPeig−min)s
can be equivalently represented as a semidefinite programming problem (SDP):

L
(s)
sohs = inf 〈HL, Gf 〉
s. t. (HL)u,v = L(u∗v), for all u, v ∈ 〈X〉s

(HL)1,1 = 1, HL ∈ S+
σ(s), H

i
L ∈ S+

σ(di)
, ∀i

(H i
L)u,v = L(u∗giv), for all u, v ∈ 〈X〉di

L linear functional on R〈X〉2s.

(DSDP’eig−min)s

We can prove by a standard technique that the dual problems have Slater points hence

L
(s)
sohs = f

(s)
sohs, for all s ≥ d (cf. [CKP12, Proposition 4.4]). By Theorem 2.3,

lim
s→∞

f
(s)
sohs = f? (4)

whenever the quadratic module MS is archimedean. We refer to [HM04, PNA10] for further

details.

3.1. Randomized algorithm. A natural question is whether the convergence in (4) is finite.

That is, does

f
(s)
sohs = f? (5)

for some s? A sufficient condition (close to being necessary) for (5) to hold is flatness of the

optimizer for (DSDP’eig−min)s, which also enables us to extract the optimizer, cf. [PNA10,

CKP12].

Recently Nie [Nie14] presented a hierarchy of semidefinite programming problems, similar

to (DSDPeig−min)s, with a random objective function that under mild conditions converges to

a flat solution. Motivated by his ideas we present the following algorithm:

Input: f ∈ SymR〈X〉 with deg f ≤ 2d, S = {g1, . . . , gr}, δ =

dmaxi deg(gi)/2e, δmax.

For s = d+ δ, d+ δ + 1, ..., d+ δ + δmax,

Step 1: Compute L(s) – the optimal solution for (DSDPeig−min)s.

Step 2: If L(s) is δ-flat then STOP.

Step 3: Else compute L
(s)
rand – the optimal solution for (DSDPrand)s.

If L
(s)
rand is δ-flat then STOP.

Output: L(s) or L
(s)
rand.

Algorithm 1: Randomized algorithm to find flat solutions for (DSDP’eig−min)s
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In Step 3 we are solving the following semidefinite program

inf 〈HL, R〉
s. t. (HL)u,v = L(u∗v), for all u, v ∈ 〈X〉s

(HL)u,v = L(s)(u∗v), for all u, v ∈ 〈X〉s−δ
HL ∈ S+

σ(s), H
i
L ∈ S+

σ(deg(gi))
, ∀i

(H i
L)u,v = L(u∗giv), for all u, v ∈ 〈X〉deg(gi)

L linear functional on R〈X〉2s.

(DSDPrand)s

The objective function is random: we use R which is a random positive definite Gram ma-

trix (corresponding to a random sum of hermitian squares polynomial). In our NCSOStools

implementation we actually repeat the Step 3 several times since it is cheaper to compute

(DSDPrand)s multiple times than going to the next value of s. The second constraint in

(DSDPrand)s implies that the solution L of this problem must coincide with L(s) on 〈X〉2(s−δ).

Following Nie we expect that Algorithm 1 will often find a δ-flat extension.

Theorem 3.1. If S is the nc ball {1−
∑

j X
2
j } or the nc polydisc {1−X2

1 , . . . , 1−X2
n}, then

Algorithm 1 always finds a 1-flat solution in the first iteration of the for loop.

Proof. In this case we have δ = 1. From [CKP12] it follows that for s = d+1 the optimal value

of (DSDPeig−min)s equals f? and that we can transform L(d+1) into a 1-flat solution. However

it is not necessary that L(d+1) from Step 1 is flat. If L(d+1) is not 1-flat, then Algorithm 1

comes to Step 3 and computes L
(d+1)
rand . We claim that it is always 1-flat. Let

H =

[
Ȟ B

Bt C

]
(6)

be the (Hankel) matrix, corresponding to L
(d+1)
rand (note that every feasible L has such a matrix

representation via H(p, q) = L(p∗q), see also Definition 4.7). Rows of Ȟ and B are labeled by

words of length ≤ d and the rows of Bt and C by words of length d+ 1. Since H � 0, we have

B = ȞW for some matrix W , i.e., the columns of B are in the range of the columns of Ȟ.

Likewise, C �W tȞW .

Write

H =

[
Ȟ ȞW

W tȞt W tȞW

]
+

[
0 0

0 C −W tȞW

]
. (7)

The first matrix is obviously feasible for almost all constraints in (DSDPrand)s and the second is

positive semidefinite. The only constraint that is not obvious is H i
L ∈ S+

σ(di)
, which is equivalent

to L(p∗(1−
∑

iX
2
i )p) ≥ 0 for all p ∈ R〈X〉d in the nc ball case, and to L(p∗(1−X2

j )p) ≥ 0 for

all p ∈ R〈X〉d in the nc polydisc case.

Let L̃ be the linear functional corresponding to the first matrix on the right-hand side of

(7). Let H∆ denote the second matrix on the right-hand side of (7). Observe that L̃ and L

coincide on words of length at most 2d. Then for p ∈ R〈X〉d
L̃
(
p∗(1−X2

i )p
)

= L̃(p∗p)− L̃(p∗X2
i p)

= L(p∗p)−
(
L(p∗X2

i p)− (H∆)pXi,pXi
)

= L
(
p∗(1−X2

i )p
)

+ (H∆)pXi,pXi ≥ 0,

http://ncsostools.fis.unm.si/


CONSTRAINED TRACE-OPTIMIZATION OF NONCOMMUTATIVE POLYNOMIALS 7

whence H i
L ∈ S+

σ(di)
. (We used that H∆ � 0, a consequence of C �W tȞW .) Similar reasoning

works for 1−
∑

iX
2
i (or any quadratic polynomial of the form g = 1−

∑
i q
∗
i qi). Therefore L̃

is feasible for (DSDPrand)s.

In (DSDPrand)s we minimize

〈HL, R〉 = 〈HL̃, R〉+ 〈C −W tȞW, R̂〉 (8)

≥ 〈HL̃, R〉.

Here R̂ is the diagonal block of R corresponding to words of length d + 1 – the bottom right

part.

Since L̃ is feasible for (DSDPrand)s, the minimum of (8) is attained where the second

summand is zero. Since R is positive definite this happens iff C = W tȞW , i.e., L = L̃ is

1-flat.

Remark 3.2. We implemented Algorithm 1 in our open source Matlab package NCSOStools

[CKP11] and numerical evidence corroborates Theorem 3.1. If flatness is checked by computing

ranks with accuracy up to 10−6 then we get flat solutions in all the examples we tested.

Furthermore, Algorithm 1 works very well in practice. It often returns flat solutions when S is

archimedean even if it is not the nc ball or nc polydisc; however, see also Example 3.3 below.

The question which archimedean S admit flat extensions is difficult.

For trace minimization we propose a similar algorithm in Section 5, but there the theo-

retical and practical performance is weaker.

Example 3.3. Consider an S as in Remark 2.2. Then DS is empty, MS is archimedean and

D∞S 6= ∅. None of the dual solutions can be flat, as each flat linear functional would yield a

point in DS .

Example 3.4. Let us consider f = XYX and S = {1−X2 − Y 2}. We can write it as

f = −1 +
X2

2
+ Y 2 + (1−X2 − Y 2) +

1

2
X(1 + Y )2X +

1

2
X(1−X2 − Y 2)X,

hence f? ≥ −1. We use NCSOStools

>> NCvars X Y

>> f = X*Y*X;

>> [A,fA,eig_val,eig_vec]=NCeigOptRand(f,{1-X^2-Y^2},6);

to obtain f? ≥ f
(2)
sohs = −0.3849 ≈ −2

√
3

9 . By some manual rounding we see

f = −2
√

3

9
+ (

4

√
4

27
− 4

√
3

4
X2)2 + q∗q +

√
3

2
X(1−X2 − Y 2)X,

where q = 4

√
1
12X −

4

√
3
4Y X. Therefore f? = −2

√
3

9 which follows also from Theorem 3.1 (the

solution underlying L
(3)
sohs is 1-flat).

We point out that optimum of f (considered as polynomial in commutative variables) over

the unit ball in R2 is also −2
√

3
9 .

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
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3.2. Numerical experiments on random polynomials. In this section we report numer-

ical results obtained by running Algorithm 1 on random polynomials. Random polynomials

were generated using a sparse random symmetric matrix (with elements coming from a stan-

dard normal distribution) of order σ(d) with proportion of non-zero elements 0.2, for n = 2, 3

and 2d = 2, 4, 6. We called in Matlab

>>R=sprandn(length(W),length(W),0.2);

>>R=R+R’;

>>poly = W’*R*W;

Here W is the vector with all monomials of order ≤ d. We considered the TV screens S =

{1−X4 − Y 4} (for n = 2) and S = {1−X4 − Y 4 − Z4} (when n = 3).

For every random polynomial we run Algorithm 1 for s = d + δ, . . . , 6 as otherwise the

complexity exceeds the capability of our computer (we used a laptop with four 2.4 GHz cores

and 4GB RAM). This means that if d = 3 (we have an nc polynomial of degree 2d = 6) then

we do only one iteration of the for loop in Algorithm 1 (recall S contains an nc polynomial of

degree 4, i.e., δ = 2).

For every s we compute in Step 3 the functional L
(s)
rand and thus its associated tracial

Hankel matrix

Ĥ =

[
HL B

Bt C

]
. (9)

We test it for δ-flatness by comparing the rank of Ĥ with the rank of its top left part HL.

We compute rank in three different ways: using Matlab functions rank, rref and by SVD

decomposition. In all three cases we take the tolerance to be 10−3. With this tolerance we

noticed that in all tested (random) cases Algorithm 1 returned a flat optimal solution already

after the first step, i.e., for s = d+δ. Even if we set the tolerance to be min{30 ·errflat, 10−3},
we still obtain flat solutions for all random instances.

In the following table we report numerical results:

n 2d # of rand inst. % of flat sol. average errflat

2 2 100 100 % 1, 1 · 10−5

2 4 100 100 % < 10−6

2 6 100 100 % < 10−6

3 2 100 100 % 1, 6 · 10−5

3 4 100 100 % 9, 9 · 10−06

Table 1. Numerical results obtained by running Algorithm 1 on random nc

polynomials in n variables of degree 2d. For every n and d we generated 100 in-

stances and computed the percentage of 2-flat solutions obtained by Algorithm

1. We see that for all generated random instances we found a 2-flat solution.

The last column contains the average of errflat over all 100 tested random

instances.
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4. Noncommutative Polynomials and the Trace

We next turn our attention to trace optimization. In this section we present main technical

ingredients needed for the tracial Lasserre relaxation scheme presented in Section 5 below.

4.1. Notation and terminology. To facilitate our considerations of the trace, we need to

consider a distinguished subset of D∞S obtained by restricting our attention from the algebra

of all bounded operators B(H ) on a Hilbert space H (which does not admit a trace if H is

infinite dimensional) to finite von Neumann algebras [Tak03].

Let F be a type II1-von Neumann algebra [Tak03, Chapter 5], and let DFS be the F-

semialgebraic set generated by S; that is, DFS consists of all tuples A = (A1, . . . , An) ∈ Fn

making s(A) a positive semidefinite operator for every s ∈ S. Then

DII1
S :=

⋃
F
DFS ,

where the union is over all type II1-von Neumann algebras F with separable predual, is called

the von Neumann (vN) semialgebraic set generated by S.

Remark 4.1. There are inclusions

DS ⊆ DII1
S ⊆ D

∞
S ; (10)

here the first is obtained via embedding matrix algebras in the hyperfinite II1-factor R, and

for the second inclusion simply consider a separable II1-factor as a subalgebra of B(H ).

Whether the first inclusion in (10) is “dense” in the sense that a polynomial f ∈ R〈X〉
is trace-positive on DS iff f is trace-positive on DII1

S is closely related to Connes’ embedding

conjecture [Con76, KS08], a deep and important open problem in operator algebras. To sidestep

this problem, we shall focus on values of nc polynomials on DII1
S instead of DS .

4.2. A tracial Positivstellensatz. We next give the tracial version of Theorem 2.3. It

provides the theoretical underpinning for the tracial version of Lasserre’s relaxation scheme

(presented in Section 5 below) used to minimize the trace of an nc polynomial.

Proposition 4.2. Let S ∪ {f} ⊆ SymR〈X〉 and suppose that MS is archimedean. Then the

following are equivalent:

(i) tr f(A) ≥ 0 for all A ∈ DII1
S ;

(ii) for all ε > 0 there exists g ∈MS with f + ε
cyc∼ g.

Proof. Since the argument is standard, we only present a sketch of the proof. The implication

(ii) ⇒ (i) is obvious. For the converse, assume ε > 0 is such that the conclusion of (ii) fails.

By archimedeanity of MS , there is a tracial linear form L : SymR〈X〉 → R with L(f + ε) ≤ 0,

L(MS) ⊆ R≥0. The usual Gelfand-Naimark-Segal (GNS) construction yields bounded self-

adjoint operators Aj and a tracial linear form on the algebra generated by the Aj . Its double

commutant is thus a finite von Neumann algebra, where tr f(A) ≤ −ε < 0, contradicting (i).

(Note that assumption (i) implies trace positivity of f on the hyperfinite II1-factor R [Tak03]

and hence on all finite type I von Neumann algebras, in particular matrices.)
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4.3. Truncated cyclic quadratic modules. For notational convenience, we recall cyclic

equivalence [KS08] of nc polynomials. Polynomials f, g ∈ R〈X〉 are called cyclically equivalent

(f
cyc∼ g) if f − g is a sum of commutators:

f − g =
k∑
i=1

[pi, qi] =
k∑
i=1

(piqi − qipi) for some k ∈ N and pi, qi ∈ R〈X〉.

This notion is of interest to us because trace zero nc polynomials are exactly sums of commu-

tators [KS08, BK09]; see also Lemma 4.4.

Given a subset S ⊆ SymR〈X〉, we define

Θ2
S,d = {f ∈ SymR〈X〉 | ∃g ∈MS,d : f

cyc∼ g}

=
{
f ∈ SymR〈X〉 | f cyc∼

∑
i

h∗ijgihij for some hij ∈ R〈X〉, gi ∈ S ∪ {1}, deg(h∗ijgihij) ≤ 2d
}
,

Θ2
S =

⋃
d∈N

Θ2
S,d,

(11)

and call Θ2
S the cyclic quadratic module generated by S, and Θ2

S,d the truncated cyclic qua-

dratic module generated by S. Here, MS,d is the truncated quadratic module generated by S,

cf. [CKP12]. In the special case when S = {g1, . . . , gr} is finite, every element f of Θ2
S,d is

cyclically equivalent to an element of the form

N∑
k=1

a∗kak +

r∑
i=1

Ni∑
j=1

b∗ij gi bij ∈MS,d (12)

for some ak, bij ∈ R〈X〉 with deg(ak) ≤ d and deg(b∗ijgibij) ≤ 2d. By Caratheodory’s theorem

on convex hulls [Bar02, Theorem I.2.3] it is possible to give the uniform bounds N,Ni ≤
1 + σ(2d) = 1 + dimR〈X〉2d.

For ε > 0 we also introduce

Nε =
⋃
k∈N

{
A = (A1, . . . , An) ∈ Snk | ε2 −

n∑
i=1

A2
i � 0

}
=
⋃
k∈N

{
A = (A1, . . . , An) ∈ Snk |

∥∥∥∥[A1 · · · An

]t∥∥∥∥ ≤ ε},
(13)

the nc ε-neighborhood of 0. (Unless mentioned otherwise, all our norms are assumed to be

operator norms, i.e., ‖A‖ = sup
{
‖Ax‖ | ‖x‖ = 1

}
.) We will also refer in the sequel to

Nε(N) = SnN
⋂
Nε.

4.4. Vanishing nc polynomials. The following results are consequences of the standard

theory of polynomial identities, cf. [Row80]. They all essentially boil down to the well–known

fact that there are no nonzero polynomial identities that hold for all sizes of (symmetric)

matrices. In fact, it is enough to test on an ε-neighborhood of 0.

Lemma 4.3. If f ∈ R〈X〉 is zero on Nε for some ε > 0, then f = 0.
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Proof. This follows from the following: an nc polynomial of degree < 2d that vanishes on all

n-tuples of symmetric matrices A ∈ Nε(N), for some N ≥ d, is zero (this uses the standard

multilinearization trick together with e.g. [Row80, §2.5, §1.4]).

Lemma 4.4. If f ∈ SymR〈X〉 has zero trace on Nε for some ε > 0, then f is a sum of

commutators, i.e., f
cyc∼ 0.

Proof. This is [KS08, Theorem 2.1]. Alternately, for a more algebraic approach see [BK09].

Lemma 4.5. Suppose f ∈ R〈X〉 and let ε > 0. If f(A) is singular for all A ∈ Nε, then f = 0.

Proof. Let A ∈ Snk for some k ∈ N be arbitrary. Then p(t) = det f(tA) is a real polynomial in

t. By assumption it vanishes on all small enough t > 0. Hence p = 0 as every polynomial of

finite degree in one real variable has only finitely many zeros. This implies f(A) is singular for

all k ∈ N and all A ∈ Snk .

Now consider the ring GM2`(n) of n symmetric 2` × 2` generic matrices. It is a PI ring

and a domain, so admits a skew field of fractions UD2`(n) [Pro76, PS76]. However, by the

Cayley-Hamilton theorem, the image f̌ of f in UD2`(n) is a zero divisor, so f̌ = 0, i.e., f is a

polynomial identity for symmetric 2`×2` matrices. Since ` was arbitrary, this yields f = 0.

In our subsequent analysis, we will need to deal with neighborhoods of non-scalar points

A. Given A ∈ Snk , let

B(A, ε) =
⋃
`∈N

{
B ∈ Snk` | ‖B − I` ⊗A‖ ≤ ε

}
denote the nc neighborhood of A. These are used to define topologies in free analysis [KVV14].

Proposition 4.6. Suppose f ∈ R〈X〉, ε > 0, and let A ∈ Sn
2k

. If f(B) is singular for all ` ∈ N
and all B ∈ B(A, ε)(2k+`), then f = 0.

Proof. For ` ∈ N and B ∈ Sn
2k+`

consider the univariate polynomial ΦB defined by

t 7→ det f(I2` ⊗A+ tB).

By assumption, ΦB vanishes for all t of small absolute value. Hence by analyticity it vanishes

everywhere. We can now proceed as in the proof of Lemma 4.5 to deduce f is a polynomial

identity for symmetric matrices of all sizes, whence f = 0.

4.5. Tracial Hankel matrices. We call a linear functional L on R〈X〉d or R〈X〉 symmetric

if L(f∗) = L(f) for all f in the domain of L.

Definition 4.7. To each symmetric linear functional L : R〈X〉2d → R we associate a matrix

HL (called an nc Hankel matrix ) indexed by words u, v ∈ 〈X〉d, with

(HL)u,v = L(u∗v). (14)

It is easy to see that L is positive (i.e., L(p∗p) ≥ 0 for all p ∈ R〈X〉d) iff HL � 0.

As we are interested in the trace, a crucial notion is invariance of L under cyclic equiva-

lence, i.e., L(f) = L(g) if f
cyc∼ g. Equivalently, (HL)u,v = (HL)w,z whenever u∗v

cyc∼ w∗z for

u, v, w, z ∈ 〈X〉d. In this case we call L tracial, and HL is a tracial Hankel matrix.
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Definition 4.8. Given g ∈ SymR〈X〉2d, we associate to L the localizing matrix H⇑L,g indexed

by words u, v ∈ 〈X〉d−ddeg(g)/2e with

(H⇑L,g)u,v = L(u∗gv). (15)

As before, L(h∗gh) ≥ 0 for all h with h∗gh ∈ R〈X〉2d iff H⇑L,g � 0.

We say that L is unital if L(1) = 1.

Remark 4.9. Note that a matrix H indexed by words of length ≤ d satisfying the nc Hankel

condition Hu1,v1 = Hu2,v2 whenever u∗1v1 = u∗2v2, gives rise to a linear functional L on R〈X〉2d
as in (14). If H � 0, then L is symmetric and positive. Furthermore, if H is invariant under

the cyclic equivalence, i.e., Hu,v = Hw,z whenever u∗v
cyc∼ w∗z for u, v, w, z ∈ 〈X〉d, then the

obtained L is tracial.

4.6. Closedness of the truncated cyclic quadratic module and a separation argu-

ment. The following technical proposition is a variant of a Powers-Scheiderer result [PS01,

§2].

Proposition 4.10. Suppose S = {g1, . . . , gr} ⊆ SymR〈X〉 is such that DS contains an ε-

neighborhood of 0. Then MS,d is a closed convex cone in the finite dimensional real vector

space SymR〈X〉2d.

For the proof of this proposition we need to isolate a (possibly) non-scalar point and its

neighborhood where all the gj are positive definite:

Lemma 4.11. Suppose 0 6∈ S = {g1, . . . , gr} ⊆ SymR〈X〉 is such that DS contains an ε-

neighborhood of 0. Then there is an A ∈ Sn
2k

and ε̄ > 0 such that all gj are positive definite on

B(A, ε̄).

Proof. By Proposition 4.6, we find a δ1 > 0 and A1 ∈ Nδ1(2k1) such that g1(A1) � 0. Then

there is an ε1 > 0 such that g1(B) � 0 for all B ∈ B(A1, ε1).

Now g2 is not singular everywhere on B(A1, ε1) by Proposition 4.6. Hence we find A2 ∈
B(A1, ε1)(2k2) with g2(A2) � 0, and a corresponding ε2 > 0 with g2|B(A2,ε2) � 0. Without loss

of generality, B(A2, ε2) ⊆ B(A1, ε1). We repeat this procedure for g3, . . . , gr. Finally, setting

A = Ar, ε̄ = εr yields the desired conclusion.

Proof of Proposition 4.10. By Lemma 4.11, we find an ε̄ > 0 and A ∈ Snk such that gj(B) � 0

for all j and all B ∈ B(A, ε̄). Using B(A, ε̄) we norm R〈X〉2d by

|||p||| := sup
{
‖p(B)‖ | B ∈ B(A, ε̄)

}
. (16)

Let δ > 0 be a lower bound on all the gj(B) for B ∈ B(A, ε̄), i.e., gj(B) − δI � 0 for all

B ∈ B(A, ε̄).

Now the proof of the proposition follows a standard argument, and is essentially a conse-

quence of Caratheodory’s theorem on convex hulls [Bar02, Theorem I.2.3]. Suppose (pm)m is a

sequence fromMS,d which converges to some p ∈ R〈X〉 of degree at most 2d. By Caratheodory’s
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theorem, there is an M (at most the dimension of R〈X〉2d plus one) such that for each m there

exist nc polynomials rm,i ∈ R〈X〉d and tm,i,j ∈ R〈X〉d such that

pm =

M∑
i=1

r∗m,irm,i +

r∑
j=1

M∑
i=1

t∗m,i,jgitm,i,j .

Since |||pm||| ≤ N2 for some N > 0, it follows that |||rm,i||| ≤ N and likewise
∣∣∣∣∣∣∣∣∣t∗m,i,jgjtm,i,j∣∣∣∣∣∣∣∣∣ ≤

N2. In view of the choice of ε, δ, we obtain |||tm,i,j ||| ≤ 1√
δ
N for all i,m, j. Hence for each i, j,

the sequences (rm,i) and (tm,i,j) are bounded in m. They thus have convergent subsequences.

Tracking down these subsequential limits finishes the proof.

Proposition 4.10 allows us to deduce the following separation result:

Corollary 4.12. Assume DS contains an ε-neighborhood of 0, and f ∈ SymR〈X〉2d \MS,d.

Then there exists a linear functional L : R〈X〉2d → R which is nonnegative on MS,d, strictly

positive on nonzero elements of Σ2
d = M∅,d with L(f) < 0.

Proof. The existence of a separating linear functional L follows from Proposition 4.10. If

necessary, add a small multiple of a linear functional strictly positive on Σ2
d \ {0}, and the

proof is complete.

As a consequence of Proposition 4.10, the cone Θ2
S,d is closed as well. For the proof we

need a preliminary result:

Lemma 4.13. Assume DS contains an ε-neighborhood of 0, and∑
j

h∗jhj +
∑
i,j

r∗ijgirij
cyc∼ 0. (17)

Then hj = rij = 0 for all i, j.

Proof. Let A, ε be such that gi � 0 on B(A, ε) for all i. For each B ∈ B(A, ε) we have∑
j

tr
(
hj(B)∗hj(B)

)
+
∑
i,j

tr
(
rij(B)∗gi(B)rij(B)

)
= 0

by (17). Hence hj(B) = rij(B) = 0. Now apply Proposition 4.6.

Corollary 4.14. Suppose S = {g1, . . . , gr} ⊆ SymR〈X〉 and assume DS contains an ε-

neighborhood of 0. Then Θ2
S,d is a closed convex cone in the finite dimensional real vector

space R〈X〉2d. In particular, if f ∈ SymR〈X〉2d \ Θ2
S,d then there exists a tracial linear func-

tional L : R〈X〉2d → R which is nonnegative on Θ2
S,d, positive on Σ2

d \ {0} with L(f) < 0.

With Lemma 4.13 at hand, the proof of this corollary is the same as that of [BK12, Lemma

4.5] so is omitted.

5. The Lasserre Relaxation Scheme for Trace-Optimization of

Noncommutative Polynomials

In this section we present the tracial version of Lasserre’s relaxation scheme to minimize

the trace of an nc polynomial.
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5.1. Trace optimization. Let S ⊆ SymR〈X〉 be finite and let f ∈ SymR〈X〉. We are

interested in the smallest trace f? ∈ R the polynomial f attains on DS , i.e.,

f? := inf
{

tr f(A) | A ∈ DS
}
. (18)

Hence f? is the greatest lower bound on the trace of f(A) for tuples of symmetric matrices

A ∈ DS , i.e., tr
(
(f − f?)(A)

)
≥ 0 for all A ∈ DS , and f? is the largest real number with this

property.

5.2. Θ2
S-relaxation. We introduce f II1

? ∈ R as the trace-minimum of f on DII1
S . Since DII1

S ⊇
DS , we have f II1

? ≤ f?. As mentioned in Remark 4.1 (see also Proposition 4.2), f II1
? is more

approachable than f?. In fact, in this section we shall present Lasserre’s relaxation scheme

producing a sequence of computable lower bounds f
(s)
Θ2 monotonically converging to f II1

? . Here,

as always, the constraint set S is assumed to produce an archimedean quadratic module MS .

Proposition 5.1. Let S ⊆ SymR〈X〉. If f ∈ Θ2
S,d, then tr f |DII1

S

� 0.

From Proposition 5.1 we can bound f II1
? from below as follows

f II1
? ≥ f

(s)
Θ2 := sup λ

s. t. f − λ ∈ Θ2
S,s,

(SPSDPtr−min)s

for s ≥ d. For s < d, (SPSDPtr−min)s boils down to

f
(s)
Θ2 := sup λ

s. t. f − λ ∈ Θ2
∅,s.

which is usually infeasible (it might be feasible if the parts of f of degrees > s are sums

of commutators). As global trace optimization is fairly well understood [BCKP13], we shall

restrict our attention to s ≥ d. For each fixed s, (SPSDPtr−min)s is an SDP (see Proposition

5.4 below) and leads to the tracial version of the Lasserre relaxation scheme.

Corollary 5.2. Let S ⊆ SymR〈X〉, and let f ∈ SymR〈X〉. If MS is archimedean, then

f
(s)
Θ2 −→

s→∞
f II1
? . (19)

The sequence f
(s)
Θ2 is monotone and bounded above, but the convergence in (19) is not finite in

general.

Proof. This follows from Proposition 4.2. For each m ∈ N, there is s(m) ∈ N with

f − f II1
? +

1

m
∈ Θ2

S,s(m).

In particular,

f
(s(m))
Θ2 ≥ f II1

? −
1

m
.

Since also

f
(s(m))
Θ2 ≤ f II1

? ,

we obtain

lim
s→∞

f
(s)
Θ2 = lim

m→∞
f

(s(m))
Θ2 ≤ f II1

? .
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Example 5.3. For a simple example with non-finite convergence, consider

p = (1−X2)(1− Y 2) + (1− Y 2)(1−X2),

and

S = {1−X2, 1− Y 2}.

Then tr p|DII1
S

≥ 0, but p 6∈ Θ2
S [KS08, Example 4.3].

The advantage of f
(s)
Θ2 over f II1

? is that although we are interested in the latter, there is

no good procedure or algorithm for computing it. The former provides an easier accessible

approximation; its computational feasibility comes from the fact that verifying whether f ∈
Θ2
S,s is a semidefinite programming (SDP) feasibility problem, when S is finite.

5.3. Interpreting Θ2
S-relaxations as SDPs.

Proposition 5.4. Let f =
∑

w∈〈X〉2d fww ∈ SymR〈X〉 and S = {g1, . . . , gr} ⊆ SymR〈X〉
with gi =

∑
w∈〈X〉deg(gi)

giww. Then f ∈ Θ2
S,d if and only if there exists a positive semidefinite

matrix A of order σ(d) and positive semidefinite matrices Bi of order σ(di) (recall that di =

bd− deg(gi)/2c) such that for all w ∈ 〈X〉2d,

fw =
∑

u,v∈〈X〉d
u∗v

cyc
∼ w

Au,v +
∑
i

∑
u,v∈〈X〉di ,z∈〈X〉deg(gi)

u∗zv
cyc
∼ w

gizB
i
u,v. (20)

Proof. We start with the “only if” part. Suppose f ∈ Θ2
S,s, hence there exist nc polynomials

ai =
∑

w∈〈X〉d a
i
ww and bi,j =

∑
w∈〈X〉di

bi,jw w such that f
cyc∼

∑
i a
∗
i ai +

∑
i,j b
∗
i,jgibi,j . In

particular this means that for every w ∈ 〈X〉2d the following must hold:

fw =
∑
i

∑
u,v∈〈X〉d
u∗v

cyc
∼ w

aiua
i
vu
∗v +

∑
i,j

∑
u,v∈〈X〉di ,z∈〈X〉deg(gi)

u∗zv
cyc
∼ w

bi,ju b
i,j
v g

i
zu
∗zv

=
∑

u,v∈〈X〉d
u∗v

cyc
∼ w

u∗v
∑
i

aiua
i
v +

∑
i

∑
u,v∈〈X〉di ,z∈〈X〉deg(gi)

u∗zv
cyc
∼ w

gizu
∗zv

∑
j

bi,ju b
i,j
v .

If we define matrix A of order σ(d) and matrices Bi of order σ(di) by Au,v =
∑

i a
i
ua

i
v and

Bi
u,v =

∑
j b
i,j
u b

i,j
v , then these matrices are positive semidefinite and satisfy (20).

To prove the “if” part we use that A and Bi are positive semidefinite, therefore we can find

(column) vectors Ai and Bi,j such that A =
∑

iAiA
t
i and Bi =

∑
j Bi,jB

t
i,j . These vectors yield

nc polynomials ai = AtiWσ(d) and bi,j = Bt
i,jWσ(di), which give a certificate for f ∈ Θ2

S,s.

Remark 5.5. The last part of the proof of Proposition 5.4 explains how to construct the

certificate for f ∈ Θ2
S,d. First we solve semidefinite feasibility problem in the variables A ∈

S+
σ(d), B

i ∈ S+
σ(di)

subject to constraints (20). Then we compute by Cholesky or eigenvalue

decomposition column vectors Ai ∈ Rσ(d) and Bi,j ∈ Rσ(di) which yield desired polynomial

certificates ai ∈ R〈X〉d and bi,j ∈ R〈X〉di .
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By Proposition 5.4, (SPSDPtr−min)s is an SDP. It can be explicitly presented as

f
(s)
Θ2 = sup f1 −A1,1 −

∑
i g
i
1B

i
1,1

s. t. fw =
∑

u,v∈〈X〉s
u∗v

cyc
∼ w

Au,v +
∑
i

∑
u,v∈〈X〉di ,z∈〈X〉deg(gi)

u∗zv
cyc
∼ w

gizB
i
u,v

for all 1 6= w ∈ 〈X〉2d,

A ∈ S+
σ(d), B

i ∈ S+
σ(di)

,

(SPSDP’tr−min)s

where we use di = bs− deg(gi)/2c.

5.4. The dual SDP.

Lemma 5.6. The dual semidefinite program to (SPSDPtr−min)s and (SPSDP’tr−min)s is:

L
(s)
Θ2 = inf L(f)

s. t. L : SymR〈X〉2s → R is linear

L(1) = 1

L(pq − qp) = 0 for all p, q ∈ R〈X〉s
with pq − pq ∈ SymR〈X〉

L(q∗q) ≥ 0 for all q ∈ R〈X〉s
L(h∗gih) ≥ 0 for all i and all h ∈ R〈X〉di

where di = bs− deg(gi)/2c

(DSDPtr−min)s

Proof. For this proof it is beneficial to adopt a functional analytic viewpoint of (SPSDPtr−min)s
and (SPSDP’tr−min)s. The primal SDP is of the form

f
(s)
Θ2 := sup λ

s. t. f − λ ∈ Θ2
S,s.

(21)

We have the following chain of reasoning (recall s ≥ d):

sup{λ | f − λ ∈ Θ2
S,s} = sup

{
λ | f − λ ∈ Θ2

S,s

}
=

= sup{λ | ∀L ∈
(
Θ2
S,s

)∨
: L(f − λ) ≥ 0} (22)

= sup{λ | ∀L ∈
(
Θ2
S,s

)∨
with L(1) = 1 : L(f) ≥ λ} (23)

= inf{L(f) | L ∈
(
Θ2
S,s

)∨
with L(1) = 1}. (24)

(Here we used
(
Θ2
S,s

)∨
to denote the set of all linear functionals R〈X〉2s → R nonnegative

on Θ2
S,s.) The last equality is trivial. We next give the reasoning behind the third equality.

Clearly, “ ≤ ” holds since every λ feasible for the right-hand side of (22) is also feasible for

the right-hand side of (23). To see the reverse inequality we consider an arbitrary λ feasible

for (23). Note that λ ≤ f1 = L̃(f), where L̃ ∈
(
Θ2
S,s

)∨
maps every polynomial into its

constant term. We shall prove that L(f −λ) ≥ 0 for every L ∈
(
Θ2
S,s

)∨
. Consider an arbitrary

L ∈
(
Θ2
S,s

)∨
and define L̂ = L+ε

L(1)+ε for some ε > 0. Then L̂(1) = 1 and L̂ ∈
(
Θ2
S,s

)∨
, therefore

L̂(f − λ) ≥ 0, whence L(f − λ) ≥ ε(λ− 1). Since ε was arbitrary we get L(f − λ) ≥ 0.
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The problem inf{L(f) | L ∈
(
Θ2
S,s

)∨
with L(1) = 1} is an SDP, and this is easily seen to

be equivalent to the form (DSDPtr−min)s given above. Indeed, if L ∈
(
Θ2
S,s

)∨
, L(1) = 1, then

L must be nonnegative on the terms (12) and on every commutator, therefore L is feasible for

the constraints in (DSDPtr−min)s.

Proposition 5.7. (DSDPtr−min)s admits Slater points.

Proof. For this it suffices to find a tracial linear map L : SymR〈X〉2s → R satisfying L(p∗p) > 0

for all nonzero p ∈ R〈X〉s, and L(h∗gjh) > 0 for all j and nonzero h ∈ R〈X〉dj . We again

exploit a variant of the fact that there are no nonzero polynomial identities that hold for all

sizes of matrices, as given in Proposition 4.6.

Let ε > 0 and A ∈ Snk be as in Proposition 4.6, and choose a countable dense subset

U = {A(j) | j ∈ N} of B(A, ε) (for instance, take all matrices from B(A, ε) with entries in Q).

To each B ∈ U we associate the linear map

LB : SymR〈X〉2s → R, f 7→ tr f(B).

Form

L :=
∞∑
j=1

2−j
LA(j)

‖LA(j)‖
.

We claim that L is the desired linear functional.

Obviously, L(p∗p) ≥ 0 for all p ∈ R〈X〉s. Suppose L(p∗p) = 0 for some p ∈ R〈X〉s.
Then LA(j)(p∗p) = 0 for all j ∈ N, i.e., for all j we have tr

(
p∗(A(j))p(A(j))

)
= 0, hence

p∗(A(j))p(A(j)) = 0. Since U was dense in B(A, ε), by continuity it follows that p∗p vanishes

on all B(A, ε). Proposition 4.6 implies that p = 0. Similarly, L(h∗gjh) = 0 implies h = 0 for

all h ∈ R〈X〉s−ddeg gj/2e.

Remark 5.8. Having Slater points for (DSDPtr−min)s is important for the clean duality theory

of SDP to kick in [VB96, dK02]. In particular, there is no duality gap, so

L
(s)
Θ2 = f

(s)
Θ2

and

LΘ2 := lim
s→∞

L
(s)
Θ2 = f II1

? .

We have implemented algorithms to compute the lower bound f
(s)
Θ2 = L

(s)
Θ2 for f II1

? and f? in

our open source toolbox NCSOStools. We are solving the semidefinite program (DSDPtr−min)s
using one of the following SDP solvers: SDPA [YFK03], SDPT3 [TTT99] or SeDuMi [Stu99]).

We demonstrate it on a few examples.

Example 5.9. We firstly demonstrate our software for set S = {1 − X2, 1 − Y 2} with the

polynomial p = (1−X2)(1−Y 2)+(1−Y 2)(1−X2) from Example 5.3, and the noncommutative

version of the Motzkin polynomial,

q = XY 4X + Y X4Y − 3XY 2X + 1.

It is obvious (see Example 5.3 and [KS08, Example 4.3]) that pII1
? = p? = 0. Similarly,

qII1
? = q? = 0 (see [KS08, Example 4.4]). We define these polynomials as follows.

http://ncsostools.fis.unm.si/
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>> NCvars X Y

>> S = {1 - X^2, 1 - Y^2};

>> p = (1-X^2)*(1-Y^2)+(1-Y^2)*(1-X^2);

>> q = X*Y^4*X+Y*X^4*Y-3*X*Y^2*X+1;

To compute the sequence of lower bounds p
(s)
Θ2 for pII1

? we call

>> [opt,decom_sohs,decom_S,base,SDP_data,Z,Zg,H,Hg] = NCtraceOpt(p,S,2*s);

with s = 2, 3, 4, 5. Similarly we obtain bounds for q. Results are reported in Table 2.

s p
(s)
Θ2 q

(s)
Θ2

2 -0.2500 n.d.

3 -0.0178 0

4 -0.0031 0

5 -0.0010 0

Table 2. Lower bounds f
(s)
Θ2 for p and q over S = {1−X2, 1− Y 2}

We can see that the sequence of bounds for p increases and does not reach the limit pII1
? when

s ≤ 5. Actually, it never reaches pII1
? ; see Example 5.3. On the other hand, the sequence of

bounds for q is finite and reaches the optimal value already for s = 3 (q
(2)
Θ2 is not defined).

Example 5.10. Let p, q be as in the previous example, and let r = XYX. Let us define

S = {1 − X, 1 − Y, 1 + X, 1 + Y }. The resulting sequences from the relaxation are in Table

3 and show that there is again no convergence in the first four steps for p, while for q we get

convergence at s = 4 and for r we get the optimal value immediately (at s = 2).

s p
(s)
Θ2 q

(s)
Θ2 r

(s)
Θ2

2 -2.0000 n.d. -1.0000

3 -0.2500 -0.0261 -1.0000

4 -0.0178 0.0000 -1.0000

5 -0.0031 0.0000 -1.0000

Table 3. Lower bounds p
(s)
Θ2 , q

(s)
Θ2 and r

(s)
Θ2 over S = {1−X, 1− Y, 1 +X, 1 + Y }

(Note that the bounds p
(s)
Θ2 are equal to bound p

(s)
Θ2 from Table 2.) To compute e.g. p

(5)
Θ2 we

need to solve (DSDPtr−min)s which has 3739 linear constraints and 5 positive semidefinite

constraints with matrix variables of sizes 63, 31, 31, 31, 31.

Example 5.11. Consider f = p∗q + q∗p, where p = XY and q = 1 + X(Y − 2) + Y (X − 2),
and S = {4−X2, 4− Y 2}. If we use NCSOStools and call

http://ncsostools.fis.unm.si/
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>> NCvars X Y

>> p = X*Y;Q=1+X*(Y-2)+Y*(X-2);f=p’*q+q’*p;

>> [opt_2,decom_sohs,decom_S,base,SDP_data,Z,Zg,H,Hg,decom_err] = NCtraceOpt(f,{4-X^2,4-Y^2},4);

>> [opt_3,decom_sohs,decom_S,base,SDP_data,Z,Zg,H,Hg,decom_err] = NCtraceOpt(f,{4-X^2,4-Y^2},6);

>> [opt_4,decom_sohs,decom_S,base,SDP_data,Z,Zg,H,Hg,decom_err] = NCtraceOpt(f,{4-X^2,4-Y^2},8);

we obtain opt_2 = f
(2)
Θ2 = −8 and opt_3 = f

(3)
Θ2 = −5.2165 and later f

(s)
Θ2 = −5.2165 for s ≥ 3

(this follows from the fact that the optimal solution underlying L
(3)
Θ2 is 1-flat, see Section 6).

It is easy to see that the minimum of f on DS ∩ R2 = [−2, 2]2 is −4.5.

6. Flatness and Extracting the Optimizers

In this section we assume S ⊆ SymR〈X〉2δ is finite, and f ∈ SymR〈X〉2d. Let MS be

archimedean. In this case DII1
S is bounded and hence f II1

? > −∞. Since MS is archimedean,

for s big enough, (SPSDPtr−min)s will be feasible.

Like in constrained eigenvalue optimization (cf. [PNA10, CKP12]) flatness is a sufficient

condition for finite convergence of the bounds f
(s)
Θ2 = L

(s)
Θ2 , i.e., exactness of trace optimization,

and also enables extraction of the minimizers.

6.1. Extract the optimizers. We first recall a variant of the flatness theorem adapted to

the tracial setting.

Proposition 6.1. Suppose L(d+k) : R〈X〉2d+2k → R is an optimal solution of (DSDPtr−min)s
for s = d + k that is δ-flat for some k ≥ δ. Then there are finitely many n-tuples A(j) of

symmetric matrices in DS(t) for some t < 4σ(d) and positive scalars λj > 0 with
∑

j λj = 1

such that

L(d+k)(p) =
∑
j

λj tr p(A(j)) (25)

for all p ∈ R〈X〉2d. In particular, f II1
? = f

(d+k)
Θ2 .

Proof. We show this is a consequence of the Gelfand-Naimark-Segal (GNS) construction and

the Artin-Wedderburn theory.

First of all, consider the truncated tracial moment sequence (yw)|w|≤2d+2k defined by

yw = L(d+k)(w)

for w ∈ 〈X〉2d+2k. By assumption, the sequence is flat over (yw)|w|≤2d+2k−2δ, hence in particular

over (yw)|w|≤2d+2k−2. By [BK12, Theorem 3.18], (yw)|w|≤2d+2k extends to a full tracial moment

sequence (yw)|w|<∞ which is flat over the original truncated sequence (yw)|w|≤2d+2k. This tracial

sequence yields a tracial linear functional L : R〈X〉 → R by L(w) = yw, extending L(d+k). We

note L is symmetric, i.e., L(w∗) = L(w), by construction.

Now apply the usual GNS construction to L. More precisely, L induces the semidefinite

sesquilinear form

(p, q) 7→ L(q∗p) (26)
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on R〈X〉. Letting N = {x ∈ R〈X〉 | (x, x) = 0} denote the nullvectors, H := R〈X〉/N is

a finite-dimensional vector space (this is where flatness enters) spanned by the images w̄ for

w ∈ 〈X〉d. The sesquilinear form (26) induces an inner product 〈 , 〉 on H by

〈ū, w̄〉 = (u,w).

Let Aj denote the left multiplication by Xj on H, i.e.,

Aj(w̄) = Xjw. (27)

It is easy to see these Aj are (well-defined and) self-adjoint, that is, A∗j = Aj . Now

L(p) = 〈p(A)1̄, 1̄〉 = 〈p̄, 1̄〉. (28)

We claim that A ∈ DS . Let g ∈ S and consider an arbitrary v ∈ H. There is a u ∈ R〈X〉d
with ū = u(A)1̄ = v. Now

〈g(A)v, v〉 = 〈g(A)u(A)1̄, u(A)1̄〉
= 〈(gu)(A)1̄, u(A)1̄〉 = L(u∗gu).

Since u∗gu ∈MS,d+k,

L(u∗gu) = L(d+k)(u∗gu) ≥ 0

by assumption.

Now the Aj are matrices of size dim(H) ≤ σ(d).

Let A be the subalgebra generated by the symmetric matrices Aj . Since the Hermitian

square of a nonzero matrix is not nilpotent, A is semisimple. By the Artin-Wedderburn

theorem, A can be (orthogonally) block diagonalized into

A = ⊕rj=1Aj . (29)

Here Ai are simple algebras (with involution), and thus ∗-isomorphic to full matrix algebras

over R, C or H. With respect to the decomposition (29), Aj = ⊕r`=1A
`
j . Each A`j is a self-

adjoint matrix, and the tuple A` ∈ DS . Without loss of generality each A`j is a real matrix; if

one of the blocks Aj is a matrix algebra over C or H, we embed it into the real matrix algebra

(twice the size for C and four times the size for H).

The tracial linear functional L induces tracial R-linear functionals Lj on the simple ∗-
algebras Aj . If p(A) = B = ⊕rj=1B

j , then

L(p) =
∑
j

Lj(B
j).

Each Lj is a positive multiple, say λj , of the usual trace [BK12, Lemma 3.11]. Thus

L(p) =
∑
j

Lj(B
j) =

∑
j

λj tr p(Aj).

Since L(1) = 1,
∑

j λj = 1.

We propose Algorithm 2 to find solutions of (DSDPtr−min)s for s ≥ deg(f) + δ which are

δ-flat enabling us to extract a minimizer of (SPSDPtr−min)s. It is a variant of Algorithm 1 and

performs surprisingly well; actually it finds flat solutions in all tested situations where finite

convergence was detected.



CONSTRAINED TRACE-OPTIMIZATION OF NONCOMMUTATIVE POLYNOMIALS 21

Input: f ∈ SymR〈X〉 with deg f = 2d, S = {g1, . . . , gr}, δ =

dmaxi deg(gi)/2e, δmax.

For s = d+ δ, d+ δ + 1, ..., d+ δ + dmax,

Step 1: Compute L(s) – the optimal solution for (DSDPtr−min)s.

Step 2: If L(s) is δ-flat then STOP.

Step 3: Else compute L
(s)
rand. If L

(s)
rand is δ-flat then STOP.

Output: L
(s)
rand

Algorithm 2: Randomized algorithm to find flat solutions for (DSDPtr−min)s

In Step 3 we solve the SDP which is obtained from (DSDPtr−min)s by fixing the upper left

corner of the Hankel matrix to be equal to left upper corner of the Hankel matrix of L(s) and

by taking a full random objective function — like in (DSDPrand)s. We repeat this step several

(e.g. 10) times. In our experiments, this algorithm often returns flat solutions if the module

MS,d is archimedean. On the other hand, there is little theoretical evidence supporting this

performance.

We repeat Steps 1–3 at most δmax + 1 times, where δmax is for computational complexity

reasons chosen so that d+δ+δmax is at most 10, if we have 2 nc variables and is at most 8 if we

have 3 nc variables. Otherwise the complexity of the underlying SDP exceeds capability of our

current hardware. We implemented Steps 1–3 from Algorithm 2 in the NCSOStools function

NCtraceOptRand. Here is a simple demonstration.

Example 6.2. >> NCvars X Y

>> w = 2 - X^2 + X*Y^2*X - Y^2;

>> [X,fX,trace_val]=NCtraceOptRand(w,{4-X^2-Y^2,X*Y+Y*X-2},4);

This gives a matrix X of size 2× 16; each row represents one symmetric 4× 4 matrix,

A = reshape(X(1, :), 4, 4) =


−0.0000 1.4044 −0.1666 −0.0000

1.4044 0.0000 0.0000 1.1329

−0.1666 0.0000 −0.0000 −0.8465

−0.0000 1.1329 −0.8465 0.0000



B = reshape(X(2, :), 5, 5) =


−0.0000 0.8465 1.1329 0.0000

0.8465 0.0000 0.0000 −0.1666

1.1329 0.0000 0.0000 −1.4044

0.0000 −0.1666 −1.4044 0.0000


such that A and B are from DS(4) and

fX = w(A,B) =


−1.0000 0.0000 0.0000 −0.0000

0.0000 −1.0000 0.0000 0.0000

0.0000 0.0000 −1.0000 0.0000

−0.0000 0.0000 0.0000 −1.0000


with (normalized) trace equal to trace_val = −1.

http://ncsostools.fis.unm.si/
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6.2. Numerical results on random NC polynomials. In this section we report numeri-

cal results obtained by running Algorithm 2 on random polynomials. We generated random

polynomials as in Subsection 3.2.

Like in Subsection 3.2 we check for δ-flatness by computing ranks in three different ways:

using Matlab functions rank, rref and by SVD decomposition. In all three cases we take the

tolerance to be min{30 · errflat, 10−3}.
With this tolerance we again observed that in all tested (random) cases Algorithm 2

returned a flat optimal solution already after the first step, i.e., for s = d+ δ. In the following

table we report numerical results:

n d # of rand inst. % of flat sol. average errflat

2 2 100 100 0,000023

2 4 100 100 0,00033

2 6 100 98 < 10−6

3 4 100 100 0,00026
Table 4. Numerical results obtained by running Algorithm 2 on random nc

polynomials in n variables of degree 2d. For every n and d we generated 100 in-

stances and computed the percentage of 2-flat solutions obtained by Algorithm

2. For almost all randomly generated instances we found a 2-flat solution. The

last column contains the average of errflat over all 100 tested random instances.

7. Concluding Remarks

In this paper we have shown how to effectively compute the smallest (or biggest) eigenvalue

or trace a noncommutative (nc) polynomial can attain on a free semialgebraic set. This in

turn allows us to prove or produce new matrix inequalities in a dimension-free setting subject

to polynomial constraints.

Our algorithm is based on sums of hermitian squares and commutators and implements the

noncommutative Lasserre relaxation scheme as a sequence of semidefinite programs (SDPs).

To prove exactness, we investigate the solutions of the dual SDPs. If one of these has a rank-

preserving property called flatness, we use it to extract eigenvalue or trace optimizers with a

procedure based on the solution to a truncated noncommutative moment problem, the Gelfand-

Naimark-Segal (GNS) construction and the Artin-Wedderburn theory. To enforce flatness we

employ a noncommutative variant of Nie’s novel randomization technique.

We have implemented these procedures in our open source computer algebra system

NCSOStools, freely available at http://ncsostools.fis.unm.si/ and this is demonstrated

throughout the paper with several illustrative examples.

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
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