
Sabine Burgdorf, Igor Klep and Janez Povh

Optimization of polynomials in
non-commuting variables

February 15, 2016

Springer

Contents

Introduction . 8
Organization of the book . 11

References . 11

1 Selected results from algebra and mathematical optimization 17
1.1 Positive semidefinite matrices . 17
1.2 Words and polynomials in non-commuting variables 19
1.3 Sums of hermitian squares and Gram matrices 21
1.4 Quadratic modules and semialgebraic sets . 24
1.5 Gelfand-Naimark-Segal’s construction . 25
1.6 Sums of hermitian squares and positivity . 27
1.7 Vanishing nc polynomials . 29
1.8 Hankel matrices and flatness . 31
1.9 Commutators, cyclic equivalence and trace zero polynomials 33
1.10 Cyclic quadratic modules and trace-positivity 35
1.11 Wedderburn’s theorem . 38
1.12 Curto-Fialkow’s theorems . 39
1.13 Semidefinite programming . 42

References . 47

2 Detecting sums of hermitian squares . 51
2.1 Introduction . 51
2.2 The Gram matrix method . 51
2.3 Newton chip method . 54
2.4 Augmented Newton chip method . 56
2.5 Implementation . 57

2.5.1 On the Gram matrix method . 57
2.5.2 Software package NCSOStools . 58

References . 59

3

4 Contents

3 Cyclic equivalence to sums of hermitian squares 63
3.1 Introduction . 63
3.2 The cyclic degree . 64
3.3 The tracial Newton polytope . 65
3.4 The tracial Gram matrix method . 66
3.5 Implementation . 72

3.5.1 Detecting members of Θ 2 by NCSOStools 73
3.5.2 BMV polynomials . 74

References . 78

4 Eigenvalue optimization of polynomials in non-commuting variables . 81
4.1 Introduction . 81
4.2 Unconstrained optimization . 82

4.2.1 Unconstrained optimization as a single SDP 82
4.2.2 Extracting optimizers for the unconstrained case 84

4.3 Constrained eigenvalue optimization of non-commutative
polynomials . 86
4.3.1 Approximation hierarchy . 86
4.3.2 Extracting optimizers . 89

4.4 Constrained optimization over the nc ball and the nc polydisc 91
4.4.1 Approximation hierarchies contain only one member 91
4.4.2 Extracting optimizers . 95

4.5 Implementation . 97
4.5.1 Application to quantum mechanics . 99

References . 102

5 Trace optimization of polynomials in non-commuting variables 105
5.1 Introduction . 105
5.2 Unconstrained trace optimization . 105
5.3 Constrained trace optimization . 107
5.4 Flatness and extracting optimizers . 111
5.5 Implementation . 113

References . 116

List of Symbols . 119

Index . 121

http://ncsostools.fis.unm.si/

List of Tables

5.1 Lower bounds tr (s)
Θ 2(f ,S) for p and q over S = {1−X2,1−Y 2} 115

5.2 Lower bounds tr (s)
Θ 2(p,S), tr (s)

Θ 2(q,S) and tr (s)
Θ 2(r,S) over

S = {1−X ,1−Y,1+X ,1+Y} . 115

5

List of Figures

1.1 Rounding and projecting to obtain a rational solution 45

3.1 The Newton polytope of f = 1−XY 3 +Y 3X +2Y 2−4X5 67

7

Introduction

Optimization problems involving polynomial data arise across many sciences, e.g. in
control theory [Che10, HG05, Sch06], operations research [Sho90, Nie09], statistics
and probability [Las09], combinatorics and graph theory [LS91, AL12], computer
science [PM81], and elsewhere. They are however difficult to solve. For example,
very simple instances of polynomial optimization problems (POPs) are known to
be NP hard. Because of their importance, various algorithms have been devised to
approximately solve POPs. Traditionally techniques have drawn from operations
research, computer science and numerical analysis. Since the boom in semidefinite
programming (SDP) in the 1990s, newer techniques for solving POPs are based on
sums of squares concepts taken from real algebraic geometry and inspired by mo-
ment theory from probability and functional analysis. There are now many excellent
packages available for solving POPs based on these methods, such as GloptiPoly
[HLL09], SOSTOOLS [PPSP05], SparsePOP [WKK+09], or YALMIP [Löf04].

In this book our focus is on polynomial optimization problems in matrix un-
knowns, i.e., non-commutative POPs or NCPOPs for short. Many applied problems,
for example those in all the textbook classics in control theory [SIG97], have matri-
ces as variables, and the formulas naturally involve polynomials in matrices. These
polynomials depend only on the system layout and do not change with the size of
the matrices involved; such problems are “dimension-free”. Analyzing them is in
the realm of free analysis [KVV14] and free real algebraic geometry (free RAG)
[BPT13].

The booming area of free analysis provides an analytic framework for dealing
with quantities with the highest degree of noncommutativity, such as large (random)
matrices. Free RAG is its branch that studies positivity of polynomials in freely
noncommuting (nc) matrix variables. In recent years free RAG has found many
applications of which we mention only a small selection. NCPOPs are ubiquitous.

Pironio, Navascués, Acı́n [NPA08, PNA10] give applications to quantum theory,
quantum information science and also consider computational aspects of NCPOPs.
In quantum theory NCPOPs are used to produce upper-bounds on the maximal
violation of Bell inequalities [PV09]. These inequalities provide a method to in-
vestigate entanglement, one of the most peculiar features of quantum mechanics,

9

10 List of Figures

which allows two parties to be correlated in a non-classical way. In the same spirit,
in [DLTW08] the authors investigate the quantum moment problem and entangled
multi-prover games using NCPOPs. NCPOPs can also be used in quantum chem-
istry to compute atomic and molecular ground state energies, etc. A famous open
problem due to Tsirelson [JNP+11, Fri12] asks whether every quantum mechan-
ical system can be modeled in finite dimensional spaces. Tsirelson’s problem is
equivalent to two big questions in operator algebras, Kirchberg’s conjecture [Kir93]
and Connes’ embedding conjecture [Con76]. The latter of these has a natural refor-
mulation as a question on NCPOPs [KS08a, BDKS14, Oza04]. Closely related to
Tsirelson’s problem is a question about the right model for non-local quantum cor-
relations. Without details, there are two widely accepted models, one with a tensor
product structure of operators and one where only commutativity between operators
located at different sites is assumed. A variant of Tsirelson’s problem would imply
that both models describe the same set of quantum correlations. Whereas for the
latter model one can apply sums of hermitian squares (SOHS) to check for positiv-
ity, as it is done by Pironio, Navascués, Acı́n [NPA08, PNA10], the former model
is more difficult due to the tensor product structure. Mančinska, Roberson [MR14],
and Sikora, Varvitsiotis [SV15] showed that bipartite quantum correlations from the
tensor model can be written as projection of an affine section of the completely pos-
itive seimidefinite cone introduced by Laurent, Piovesan [LP15]. Formally, it is the
cone of Gram matrices of tuples positive semidefinite matrces. But this cone can
also be derived by dualizing a certain cone of nc polynomials with positive trace,
bringing NCPOPs back into the picture, see also [BLP15].

Helton et al. in [HMdOP08] survey applications and connections to control and
systems engineering. Free RAG and NCPOPs are employed to enforce convexity
in classes of dimension-free problems. Cimprič [Cim10] uses NCPOPs to investi-
gate PDEs and eigenvalues of polynomial partial differential operators. Inspired by
randomized algorithms in machine learning, Recht and Re [RR12] investigate the
arithmetic-geometric mean inequality for matrices with the aid of NCPOPs.

Finally, we mention an application of NCPOPs to statistical physics. The Bessis-
Moussa-Villani (BMV) conjecture [BMV75] (now a theorem of Stahl [Sta13]) arose
from an attempt to simplify the calculation of partition functions of quantum me-
chanical systems. It states that for any two symmetric matrices A,B, where B is
positive semidefinite, the function t 7→ tr(eA−tB) is the Laplace transform of a posi-
tive Borel measure with real support. This permits the calculation of explicit upper
and lower bounds of energy levels in multiple particle systems. The BMV con-
jecture is intimately related with positivity of certain symmetric nc polynomials
[KS08b, Bur11].

We developed NCSOStools [CKP11] as a consequence of this recent flurry of
interest in free RAG. NCSOStools [CKP11] is an open source Matlab toolbox for
handling NCPOPs. It solves unconstrained and constrained NCPOPs, either opti-
mizing for eigenvalues or trace of an nc polynomial objective function, by convert-
ing them to a standard SDP which is then solved using one of the existing solvers
such as SeDuMi [Stu99] SDPT3 [TTT99], or SDPA [YFK03]. As a side product our
toolbox implements symbolic computation with nc variables in Matlab. This book

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/

References 11

presents the theoretical underpinnings needed for all the algorithms we implemented
with examples computed in NCSOStools [CKP11].

Organization of the book

The book is organized as follows. Chapter 1 collects all the background material
from algebra, functional analysis and mathematical optimization needed throughout
the book. On the algebraic side we introduce non-commutative polynomials, com-
mutators, sums of hermitian squares, quadratic modules and semialgebraic sets from
free RAG. Then we discuss the nc moment problem and its solution via flatness and
the Gelfand-Naimark-Segal (GNS) construction. Finally, the chapter concludes with
a discussion of SDP.

Our basic tool to minimize the eigenvalues of an nc polynomial is based on
SOHS. In fact, by Helton’s sum of squares theorem [Hel02] an nc polynomial is
positive semidefinite if and only if it is a SOHS. Chapter 2 explains how to test if a
given nc polynomial is a SOHS. This is based on an appropriate variant of the Gram
matrix method; an nc polynomial is a SOHS if and only if the associated SDP is
feasible. What is new and in sharp contrast to the commutative case is the complex-
ity of the constructed SDP. Namely, its order is linear in the size of the input data.
This is obtained from a careful analysis of the nc Newton polytope and the so-called
Newton chip method.

Observe that a matrix has nonnegative trace if and only if it is a sum of a positive
semidefinite matrix (a hermitian square) and a trace zero matrix (a commutator).
Motivated by this simple observation we propose a sum of hermitian squares and
commutators certificate for trace-positivity of nc polynomials. These certificates are
analyzed in Chapter 3. We provide tracial analogs of the Gram matrix method and
the Newton polytope.

In Chapter 4 we turn to optimization of nc polynomials. We present uncon-
strained and constrained optimizations. Uncostrained optimization is a single SDP,
while we give a Lasserre-type [Las01] relaxation scheme for constrained optimiza-
tion. This includes a study of exactness based on the Curto-Fialkow [CF96, CF98]
flatness results generalized to the non-commutative setting. Special attention is
given to special cases of convex constraint sets, i.e., nc balls and nc polydiscs. There
constrained optimization reduces to a single SDP.

Finally, Chapter 5 presents tracial optimization of nc polynomials and tracial
analogs of the results in Chapter 4.

References

[AL12] Miguel F. Anjos and Jean B. Lasserre. Handbook of Semidefinite,
Conic and Polynomial Optimization: Theory, Algorithms, Software

http://ncsostools.fis.unm.si/

12 References

and Applications, volume 166 of International Series in Operational
Research and Management Science. Springer, 2012.

[BDKS14] Sabine Burgdorf, Ken Dykema, Igor Klep, and Markus Schweighofer.
Addendum to “Connes’ embedding conjecture and sums of hermitian
squares” [Adv. Math. 217 (4)(2008) 1816–1837]. Advances in Math-
ematics, 252:805–811, 2014.

[BLP15] Sabine Burgdorf, Monique Laurent, and Teresa Piovesan. On the clo-
sure of the completely positive semidefinite cone and linear approx-
imations to quantum colorings. arXiv preprint arXiv:1502.02842,
2015.

[BMV75] Daniel Bessis, Pierre Moussa, and Matteo Villani. Monotonic con-
verging variational approximations to the functional integrals in quan-
tum statistical mechanics. J. Mathematical Phys., 16(11):2318–2325,
1975.

[BPT13] Grigoriy Blekherman, Pablo A. Parrilo, and Rekha R. Thomas.
Semidefinite optimization and convex algebraic geometry, volume 13.
SIAM, 2013.

[Bur11] Sabine Burgdorf. Sums of hermitian squares as an approach to the
BMV conjecture. Linear and Multilinear Algebra, 59(1):1–9, 2011.

[CF96] Raul E. Curto and Lawrence A. Fialkow. Solution of the truncated
complex moment problem for flat data. Mem. Amer. Math. Soc.,
119(568):x+52, 1996.

[CF98] Raul E. Curto and Lawrence A. Fialkow. Flat extensions of positive
moment matrices: recursively generated relations. Mem. Amer. Math.
Soc., 136(648):x+56, 1998.

[Che10] Graziano Chesi. LMI techniques for optimization over polynomi-
als in control: a survey. Automatic Control, IEEE Transactions on,
55(11):2500–2510, 2010.

[Cim10] Jaka Cimprič. A method for computing lowest eigenvalues of sym-
metric polynomial differential operators by semidefinite program-
ming. J. Math. Anal. Appl., 369(2):443–452, 2010.

[CKP11] Kristijan Cafuta, Igor Klep, and Janez Povh. NCSOStools: a computer
algebra system for symbolic and numerical computation with non-
commutative polynomials. Optim. Methods. Softw., 26(3):363–380,
2011. Available from http://ncsostools.fis.unm.si/.

[Con76] Alain Connes. Classification of injective factors. Cases II1, II∞, IIIλ ,
λ 6= 1. Ann. of Math. (2), 104(1):73–115, 1976.

[DLTW08] Andrew C. Doherty, Yeong-Cherng Liang, Ben Toner, and Stephanie
Wehner. The quantum moment problem and bounds on entangled
multi-prover games. In Computational Complexity, 2008. CCC’08.
23rd Annual IEEE Conference on, pages 199–210. IEEE, 2008.

[Fri12] Tobias Fritz. Tsirelson’s problem and Kirchberg’s conjecture. Reviews
in Mathematical Physics, 24(05):1250012, 2012.

[Hel02] J. William Helton. “Positive” noncommutative polynomials are sums
of squares. Ann. of Math. (2), 156(2):675–694, 2002.

http://ncsostools.fis.unm.si/

References 13

[HG05] Didier Henrion and Andrea Garulli. Positive polynomials in control,
volume 312. Springer Science & Business Media, 2005.

[HLL09] Didier Henrion, Jean B. Lasserre, and Johan Löfberg. GloptiPoly 3:
moments, optimization and semidefinite programming. Optim. Meth-
ods Softw., 24(4-5):761–779, 2009. Available from http://www.
laas.fr/˜henrion/software/gloptipoly3/.

[HMdOP08] J. William Helton, Scott McCullough, Mauricio C. de Oliveira, and
Mihai Putinar. Engineering Systems and Free Semi-Algebraic Geom-
etry. In Emerging Applications of Algebraic Geometry, volume 149
of IMA Vol. Math. Appl., pages 17–62. Springer, 2008.

[JNP+11] Marius Junge, Miguel Navascues, Carlos Palazuelos, D. Perez-Garcia,
Volkher B. Scholz, and Reinhard F. Werner. Connes’ embedding
problem and Tsirelson’s problem. Journal of Mathematical Physics,
52(1):012102, 2011.

[Kir93] Eberhard Kirchberg. On non-semisplit extensions, tensor products
and exactness of group C*-algebras. Inventiones mathematicae,
112(1):449–489, 1993.

[KS08a] Igor Klep and Markus Schweighofer. Connes’ embedding conjecture
and sums of Hermitian squares. Adv. Math., 217(4):1816–1837, 2008.

[KS08b] Igor Klep and Markus Schweighofer. Sums of Hermitian squares and
the BMV conjecture. J. Stat. Phys, 133(4):739–760, 2008.

[KVV14] Dmitry S. Kaliuzhnyi-Verbovetskyi and Victor Vinnikov. Foundations
of free noncommutative function theory, volume 199. American Math-
ematical Society, 2014.

[Las01] Jean B. Lasserre. Global optimization with polynomials and the prob-
lem of moments. SIAM J. Optim., 11(3):796–817, 2000/01.

[Las09] Jean B. Lasserre. Moments, Positive Polynomials and Their Applica-
tion. Imperial College Press, London, 2009.

[Löf04] Johan Löfberg. YALMIP: A Toolbox for Modeling and Optimiza-
tion in MATLAB. In Proceedings of the CACSD Conference, Taipei,
Taiwan, 2004. Available from http://control.ee.ethz.ch/

˜joloef/wiki/pmwiki.php.
[LP15] Monique Laurent and Teresa Piovesan. Conic Approach to Quantum

Graph Parameters Using Linear Optimization Over the Completely
Positive Semidefinite Cone. SIAM J. Optim., 25(4):2461–2493, 2015.

[LS91] László Lovász and Alexander Schrijver. Cones of matrices and set-
functions and 0-1 optimization. SIAM J. Optim., 1(2):166–190, 1991.

[MR14] Laura Mančinska and David E. Roberson. Note on the correspon-
dence between quantum correlations and the completely positive
semidefinite cone. 2014. Available from http://quantuminfo.
quantumlah.org/memberpages/laura/corr.pdf.

[Nie09] Jiawang Nie. Sum of squares method for sensor network localization.
Computational Optimization and Applications, 43(2):151–179, 2009.

http://www.laas.fr/~henrion/software/gloptipoly3/
http://www.laas.fr/~henrion/software/gloptipoly3/
http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php
http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php
http://quantuminfo.quantumlah.org/memberpages/laura/corr.pdf
http://quantuminfo.quantumlah.org/memberpages/laura/corr.pdf

14 References

[NPA08] Miguel Navascués, Stefano Pironio, and Antonio Acı́n. A convergent
hierarchy of semidefinite programs characterizing the set of quantum
correlations. New Journal of Physics, 10(7):073013, 2008.

[Oza04] Narutaka Ozawa. About the QWEP conjecture. International Journal
of Mathematics, 15(05):501–530, 2004.

[PM81] Azaria Paz and Shlomo Moran. Non deterministic polynomial opti-
mization problems and their approximations. Theoretical Computer
Science, 15(3):251–277, 1981.

[PNA10] Stefano Pironio, Miguel Navascués, and Antonio Acı́n. Convergent
relaxations of polynomial optimization problems with noncommuting
variables. SIAM J. Optim., 20(5):2157–2180, 2010.

[PPSP05] Stephen Prajna, Antonis Papachristodoulou, Pete Seiler, and Pablo A.
Parrilo. SOSTOOLS and its control applications. In Positive polyno-
mials in control, volume 312 of Lecture Notes in Control and Inform.
Sci., pages 273–292. Springer, Berlin, 2005.

[PV09] Károly F. Pál and Tamás Vértesi. Quantum bounds on Bell inequali-
ties. Phys. Rev. A, 79:022120, Feb 2009.

[RR12] Benjamin Recht and Christopher Ré. Beneath the valley of the
noncommutative arithmetic-geometric mean inequality: conjectures,
case-studies, and consequences. JMLR: Workshop and Conference
Proceedings, pages 11.1–11.24, 2012.

[Sch06] Carsten W. Scherer. LMI relaxations in robust control. European
Journal of Control, 12(1):3–29, 2006.

[Sho90] Naum Z. Shor. Dual quadratic estimates in polynomial and Boolean
programming. Annals of Operations Research, 25(1):163–168, 1990.

[SIG97] Robert E. Skelton, Tetsuya Iwasaki, and Dimitri E. Grigoriadis. A
unified algebraic approach to control design. CRC Press, 1997.

[Sta13] Herbert R. Stahl. Proof of the BMV conjecture. Acta Math.,
211(2):255–290, 2013.

[Stu99] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimiza-
tion over symmetric cones. Optim. Methods Softw., 11/12(1-4):625–
653, 1999. Available from http://sedumi.ie.lehigh.edu/.

[SV15] Jamie Sikora and Antonios Varvitsiotis. Linear conic formulations for
two-party correlations and values of nonlocal games. arXiv preprint
arXiv:1506.07297, 2015.

[TTT99] Kim C. Toh, Michael J. Todd, and Reha Tütüncü. SDPT3–a MATLAB
software package for semidefinite programming, version 1.3. Optim.
Methods Softw., 11/12(1-4):545–581, 1999. Available from http:
//www.math.nus.edu.sg/˜mattohkc/sdpt3.html.

[WKK+09] Hayato Waki, Sunyoung Kim, Masakazu Kojima, Masakazu Mu-
ramatsu, and Hiroshi Sugimoto. Algorithm 883: sparsePOP—a
sparse semidefinite programming relaxation of polynomial optimiza-
tion problems. ACM Trans. Math. Software, 35(2):Art. 15, 13, 2009.

[YFK03] Makoto Yamashita, Katsuki Fujisawa, and Masakazu Kojima. Imple-
mentation and evaluation of SDPA 6.0 (semidefinite programming al-

http://sedumi.ie.lehigh.edu/
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

References 15

gorithm 6.0). Optim. Methods Softw., 18(4):491–505, 2003. Available
from http://sdpa.sourceforge.net/.

http://sdpa.sourceforge.net/

Chapter 1
Selected results from algebra and mathematical
optimization

1.1 Positive semidefinite matrices

Positive semidefinite matrices will be used extensively throughout the book. There-
fore we fix notation here and present some basic properties needed later on.

Definition 1.1. A matrix A ∈ Rn×n is symmetric if AT = A. We denote the vector
space of all symmetric matrices of order n by Sn. Further, we denote the set of k-
tuples A = (A1, . . . ,Ak) of symmetric matrices Ai of order n by Sk

n; and set Sk =⋃
n≥1Sk

n if we consider tuples of arbitrary order.

Definition 1.2. A matrix A ∈ Sn is positive semidefinite (definite), if xT Ax ≥ 0
(xT Ax > 0) for any nonzero x ∈ Rn. We denote the sets of positive semidefinite
and positive definite matrices by S+n and S++

n , respectively. By A � B (A � B) we
denote that A−B ∈ S+n (A−B ∈ S++

n).

In the following theorems we quote the most important properties of positive
(semi)definite matrices. By λmin(·) we denote the smallest eigenvalue of (symmet-
ric) matrix. Proofs of the theorems can be found in e.g., [HJ12, Section 7.2].

Theorem 1.3. Let A ∈ Sn. The following are equivalent:

(i) A ∈ S+n ,
(ii) λmin(A)≥ 0,

(iii) there exists a matrix B such that A = BT B,
(iv) detAII ≥ 0 for any principal submatrix AII = [ai, j]i, j∈I , I ⊆ {1, . . . ,n}.

Theorem 1.4. For a matrix A ∈ Sn the following propositions are equivalent:

(i) A ∈ S++
n ,

(ii) A−1 exists and A−1 ∈ S++
n ,

(iii) λmin(A)> 0,
(iv) there exists a non-singular matrix B ∈ Rn×n such that A = BT B,
(v) detAk > 0 for any leading k-submatrix Ak = [ai, j]1≤i, j≤k of A.

17

18 1 Selected results from algebra and mathematical optimization

The property (iv) of Theorem 1.3 implies the following:

Corollary 1.5. If A ∈ S+n , then for any 1≤ i≤ n we have ai,i ≥ 0.

This implies in particular, that the trace of a positive semidefinite matrix is always
nonnegative.

Definition 1.6. The (normalized) trace of a matrix A ∈ Sn is given as the sum of its
diagonal entries divided by its order, i.e.,

trA =
1
n

n

∑
i=1

ai,i. (1.1)

Proposition 1.7. Let B∈Rn×n be an arbitrary non-singular matrix. A matrix A∈ Sn
is positive semidefinite (definite) if and only if the matrix BT AB is also positive
semidefinite (definite).

Proof. For u ∈ Rn and v = B−1u we have uT Au = uT B−T BT ABB−1u = vT BT ABv.
Therefore BT AB ∈ S+n (S++

n) if and only if A ∈ S+n (S++
n).

Remark 1.8. In the rest of the book we only need the simpler implication of the
above proposition. If A ∈ Sn is positive semidefinite, then BT AB is also positive
semidefinite for any B.

Lemma 1.9. Let A ∈ S+n . Then:

(i) There exists i ∈ {1,2, . . . ,n} such that ai,i = max{|ai, j| ; i, j ∈ {1,2, . . . ,n}}.
(ii) If ai,i = 0 for some i, then A(i, :) = 0 and A(:, i) = 0.

Proof. If (i) is not true, then we can find indices i, j ∈ {1, . . . ,n}, i < j, such that
max{ai,i,a j, j} < |ai, j|. On the other hand, if (ii) fails, then we can find i 6= j such
that ai,i = 0 and ai, j 6= 0. In both cases the following principal submatrix[

ai,i ai, j
a j,i a j, j

]
has a negative determinant, contradicting the property (iv) from Theorem 1.3.

We can relate the positive semidefiniteness of a block matrix to the positive
semidefiniteness of its blocks.

Theorem 1.10 (Schur complement). Let A ∈ S++
m , C ∈ Sn and B ∈Rm×n. We have[

A B
BT C

]
� 0 if and only if C−BT A−1B� 0

and [
A B

BT C

]
� 0 if and only if C−BT A−1B� 0.

Proof. See [HJ12, Theorem 7.7.6]
The following theorem will be used later on when we consider flat matrices.

1.2 Words and polynomials in non-commuting variables 19

Proposition 1.11. Write

Ã =

[
A B

BT C

]
with A ∈ Sm, C ∈ Sn and B ∈ Rm×n. Then Ã � 0 if and only if A � 0, and there is
some Z with

B = AZ and C � ZT AZ.

Proof. Assume A� 0. Given a Z with B = AZ and C−ZT AZ � 0 we get[
A B

BT C

]
=

[
I 0

ZT I

][
A 0
0 C−ZT AZ

][
I Z
0 I

]
. (1.2)

Therefore Ã� 0 by Proposition 1.7, since[
I Z
0 I

]
is non-singular.

For the converse direction, we use that the columns of B are in the range of A if
Ã� 0. Indeed, by the positive semidefiniteness of A, which follows from Ã� 0, we
have that ranA = (kerA)⊥. So it suffices to show that the columns of B belongs to
(kerA)⊥. For this let x ∈ kerA, then [x

0] ∈ ker Ã by the positive semidefiniteness of
Ã and thus [

A B
BT C

][
x
0

]
= 0.

Hence BT x = 0 which implies the statement.
Knowing that columns of B belong to the range of A we find a Z such that B=AZ.

Using this, the decomposition (1.2) together with Ã � 0 imply that C−ZT AZ � 0.

1.2 Words and polynomials in non-commuting variables

This book is about real polynomials in non-commutative variables. We construct
such polynomials in two steps. Starting with a finite alphabet X1, . . . ,Xn (where we
fix an integer n ∈ N) we first generate all possible words in these letters with finite
length by concatenating the letters. We add the empty word, denoted by 1. The
set of words, obtained this way, is therefore a monoid, freely generated by letters
X1, . . . ,Xn. We denote it by 〈X〉, where we use notation X := (X1, . . . ,Xn). Note that
the order of letters in words of 〈X〉 is important i.e., X1X2 is different from X2X1. If
we consider only two variables, we often denote them as X ,Y instead of X1,X2.

In the second step we construct all possible finite real linear combinations of
words from 〈X〉, which we call real polynomials in non-commutative variables,
shorter nc polynomials. This set R〈X〉 is therefore a free algebra with generating

20 1 Selected results from algebra and mathematical optimization

set {X1, . . . ,Xn}. Hence

R〈X〉= {
N

∑
i=1

aiwi | N ∈ N, ai ∈ R, wi ∈ 〈X〉}.

An element of the form aww where aw ∈ R\{0} and w ∈ 〈X〉 is called a mono-
mial and aw its coefficient. Hence words (elements of 〈X〉) are monomials whose
coefficient is 1.

The length of the longest word in an nc polynomial f ∈ R〈X〉 is the degree of f
and is denoted by deg f . We shall also consider the degree of f in Xi, deg i f . Simi-
larly, the length of the shortest word appearing in f ∈ R〈X〉 is called the minimum
degree of f and denoted by mindeg f . Likewise, mindeg i f is introduced. If the vari-
able Xi does not occur in some monomial in f , then mindeg i f = 0. For instance, if
f = X3

1 +2X1X2X3−X2
1 X2

4 , then

deg f = 4, deg 1 f = 3, deg 2 f = deg 3 f = 1, deg 4 f = 2,

mindeg f = 3, mindeg 1 f = 1, mindeg 2 f = mindeg 3 f = mindeg 4 f = 0.

The set of all words of degree ≤ d will be denoted by 〈X〉d . Likewise we denote
nc polynomials of degree≤ d by R〈X〉d . We let Wd denote the vector of all words of
degree ≤ d (i.e., Wd is 〈X〉d in lexicographic order). If an nc polynomial f involves
only two variables, we use R〈X ,Y 〉 instead of R〈X1,X2〉.
Remark 1.12. The dimension of R〈X〉d equals the length of Wd (containing words
in n letters), which is

σ(n,d) :=
d

∑
k=0

nk =
nd+1−1

n−1
.

Thus σ(n,d) grows exponentially with the polynomial degree d. Since the number
of letters n is usually obvious we simplify notation and use σ(d) instead of σ(n,d).

We equip R〈X〉 with the involution ∗ that fixes R∪ {X1, . . . ,Xn} point-wise and
thus reverses words, e.g. (X1X2

2 X3−2X3
3)
∗ = X3X2

2 X1−2X3
3 . Hence R〈X〉 is the ∗-

algebra freely generated by n symmetric letters. The involution extends naturally to
matrices (in particular, to vectors) over R〈X〉. For instance, if V = (vi) is a (column)
vector of nc polynomials vi ∈ R〈X〉, then V∗ is the row vector with components v∗i .
We use VT to denote the row vector with components vi.

Let SymR〈X〉 denote the set of all symmetric elements, that is,

SymR〈X〉= { f ∈ R〈X〉 | f = f ∗}.

Remark 1.13. Occasionally one needs to work with the free ∗-algebra R〈X ,X∗〉,
i.e., the ∗-algebra freely generated by n (non-symmetric) nc variables X , or with
the mixed case where some of the variables are symmetric and some are not. All
of the notions introduced above in the case of symmetric variables have natural
counterparts in R〈X ,X∗〉. For clarity of exposition, we have restricted ourselves to
R〈X〉 but most of the results in the book can be easily adapted to R〈X ,X∗〉.

1.3 Sums of hermitian squares and Gram matrices 21

1.3 Sums of hermitian squares and Gram matrices

In this section we consider the nc polynomials that are sums of hermitian squares
(SOHS) and show how to decide for a given nc polynomial whether such a repre-
sentation exists.

Definition 1.14. An nc polynomial of the form g∗g is called a hermitian square. We
say that f ∈ R〈X〉 is a sum of hermitian squares (SOHS) if there exist nc polyno-
mials g1, . . . ,gN ∈ R〈X〉 for some N ∈ N such that f = ∑

N
i=1 g∗i gi. The set of SOHS

polynomials will be denoted by Σ 2 and the set of SOHS polynomials of degree≤ 2d
by Σ 2

2d :

Σ
2 :=

{ N

∑
i=1

a∗i ai | N ∈ N, ai ∈ R〈X〉
}
,

Σ
2
2d :=

{
f ∈ Σ

2 | deg f ≤ 2d
}
.

Clearly, Σ 2,Σ 2
2d (SymR〈X〉.

Example 1.15.

XY −Y X 6∈ SymR〈X ,Y 〉, XY X ∈ SymR〈X ,Y 〉 \Σ
2,

1−2X +2X2 +XY +Y X−X2Y −Y X2 +Y X2Y =

(1−X +XY)∗(1−X +XY)+X2 ∈ Σ
2.

The question whether f ∈ SymR〈X〉 is a sum of hermitian squares can be answered
through the procedure known as the Gram matrix method. The core of the method
is given by the following proposition (cf. [Hel02, Section 2.2] or [MP05, Theorem
2.1]), the non-commutative version of the classical result due to Choi, Lam and
Reznick ([CLR95, Section 2]; see also [Par03, PW98]). The easy proof is included
for the sake of completeness.

Proposition 1.16. Suppose f ∈ SymR〈X〉2d . Then f ∈ Σ 2 if and only if there exists
a positive semidefinite matrix G satisfying

f = W∗
dGWd , (1.3)

where Wd is a vector consisting of all words in 〈X〉 of degree ≤ d.
Conversely, given such a positive semidefinite matrix G with rank r, one can

construct nc polynomials g1, . . . ,gr ∈ R〈X〉 of degree ≤ d such that

f =
r

∑
i=1

g∗i gi. (1.4)

The matrix G from Proposition 1.16 is called a Gram matrix for f .

22 1 Selected results from algebra and mathematical optimization

Proof. If f = ∑i g∗i gi ∈ Σ 2, then deggi ≤ d for all i as the highest degree terms
cannot cancel. Indeed, otherwise by extracting all the appropriate highest degree
terms hi with degree > d from the gi we would obtain hi ∈ R〈X〉 \{0} satisfying

∑
i

h∗i hi = 0. (1.5)

By substituting symmetric matrices for variables in (1.5), we see that each hi van-
ishes for all these substitutions. But then the nonexistence of polynomial identities
for arbitrary tuples of symmetric matrices (cf. [Row80, Section 2.5, Section 1.4])
implies hi = 0 for all i. Contradiction.

Hence we can write gi = GT
i Wd , where GT

i is the (row) vector consisting of
the coefficients of gi. Then g∗i gi = W∗

dGiGT
i Wd and by setting G := ∑i GiGT

i , (1.3)
clearly holds.

Conversely, given a positive semidefinite G ∈ RN×N of rank r satisfying (1.3),
write G = ∑

r
i=1 GiGT

i for Gi ∈ RN×1. Defining gi := GT
i Wd yields (1.4).

Proposition 1.16 implies straightforwardly the following corollary.

Corollary 1.17. Let f ∈ SymR〈X〉2d . Then f ∈ Σ 2
2d if and only if there exist at most

σ(d) polynomials gi ∈ R〈X〉d such that f = ∑i g∗i gi.

Example 1.18. Let

f = 1−2X +X2 +X4 +Y 2 +Y 4−XY 3 +X3Y +Y X3−Y 3X +XY 2X +Y X2Y.

A Gram matrix for f is given by

G =


1 −1 0 0 0 0 0
−1 1 0 0 0 0 0

0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 −1
0 0 0 0 0 −1 1

 ,
if the word vector is W2 =

[
1 X Y X2 XY Y X Y 2

]T
. G is positive semidefinite as

is easily seen from its characteristic polynomial or by observing that G =CTC for

C =

[
1 −1 0 0 0 0 0
0 0 1 0 0 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 −1

]
.

From CW2 =
[

1−X Y X2 +XY Y X−Y 2
]T it follows that

f = (1−X)2 +Y 2 +(X2 +XY)∗(X2 +XY)+(Y X−Y 2)∗(Y X−Y 2) ∈ Σ
2.

Note that in this example all monomials from W2 appear in the SOHS decomposi-
tion of f . Another Gram matrix for f is given by

1.3 Sums of hermitian squares and Gram matrices 23

G̃ =


1 −1 0 1

2 0 0 0
−1 0 0 0 0 0 0

0 0 1 0 0 0 0
1
2 0 0 1 1 0 0
0 0 0 1 1 0 0
0 0 0 0 0 1 −1
0 0 0 0 0 −1 1

 .
It is obviously not positive semidefinite, since G̃2,2 = 0, while G̃2,1 6= 0, contradict-
ing (ii) of Lemma 1.9. Hence it does not give rise to a SOHS decomposition.

Proposition 1.19. Suppose h ∈ SymR〈X〉 is homogeneous of degree 2d and let Vd
be a vector consisting of all words in 〈X〉 of degree exactly d. Then

(i) h has essentially a unique Gram matrix, i.e., there is a unique symmetric matrix
G satisfying

h = V∗dGVd . (1.6)

(ii) h ∈ Σ 2 if and only if G in (1.6) is positive semidefinite.

Proof. (i) follows from the fact that every word of degree 2d can be written uniquely
as a product of two words of degree d.

For (ii) suppose h ∈ Σ 2. In a SOHS decomposition of h we may leave out all
monomials of degree 6= d (the lowest, resp. highest degree terms cannot cancel),
hence a desired positive semidefinite G exists (cf. proof of Proposition 1.16). The
converse is obvious.

The sets Σ 2 and Σ 2
2d are convex cones. The latter cone is additionally closed in the

finite dimensional vector space R〈X〉2d , as follows from the following proposition
[MP05, Proposition 3.4].

Proposition 1.20. Σ 2
2d is a closed convex cone in R〈X〉2d .

Proof. This is a variant of the analogous claim in the commutative setting. Endow
R〈X〉2d with a norm ‖ ‖. Recall that σ(d) = dimR〈X〉d . By Corollary 1.17 each
element f ∈ Σ 2

2d can be written as a sum of at most σ(d) hermitian squares of
degree at most 2d since highest degree terms cannot cancel. Hence the image of

ϕ : (R〈X〉d)σ(d)→ R〈X〉2d

(g j)
σ(d)
j=1 7→

σ

∑
j=1

g∗jg j

equals Σ 2
2d . In (R〈X〉d)σ we define V := {h = (hi) | ‖h‖= 1}. Note that V is com-

pact, thus ϕ(V) ⊆ Σ 2
2d is compact as well. Since 0 /∈ V , (there are no dimension-

free polynomial identities for tuples of symmetric matrices, cf. [Row80]) we see
that 0 /∈ ϕ(V).

Now, consider a sequence fk ∈ Σ 2
2d (k ≥ 1) converging to f ∈ R〈X〉2d . Write

fk = λkvk for λk ∈ R≥0 and vk ∈ ϕ(V). Since ϕ(V) is compact, there exists a sub-
sequence of (vk)k (again denoted as (vk)k) converging to v ∈ ϕ(V). In particular,
v is a sum of hermitian squares. As 0 /∈ ϕ(V), we have v 6= 0 and thus we have
convergence

24 1 Selected results from algebra and mathematical optimization

λk =
‖ fk‖
‖vk‖

→ ‖ f‖
‖v‖

as k→ ∞.

Thus fk converges to f := ‖ f‖
‖v‖ v ∈ Σ 2

2d .

1.4 Quadratic modules and semialgebraic sets

In this section we introduce notation and basic results needed later for constrained
optimization of nc polynomials. We start by a (usually finite) subset S⊆ SymR〈X〉
of symmetric nc polynomials and consider the quadratic module and semialgebraic
set associated to S.

Let us shortly recap Carathèodory’s theorem [Bar02, p. 10], which will be needed
several times later on.

Theorem 1.21 (Carathèodory). Let C ⊆ Rd . Then every point c ∈ conv(C) :=
{∑k αkck | αk ≥ 0,∑k αk = 1} can be represented as a convex combination of d +1
points from C.

Definition 1.22. A subset M ⊆ SymR〈X〉 is called a quadratic module if

1 ∈M, M+M ⊆M and a∗Ma⊆M for all a ∈ R〈X〉.

Given a subset S⊆ SymR〈X〉, the quadratic module MS generated by S is the small-
est subset of SymR〈X〉 containing all a∗sa for s ∈ S∪{1}, a ∈ R〈X〉, and being
closed under addition:

MS :=
{ N

∑
i=1

a∗i siai | N ∈ N, si ∈ S∪{1}, ai ∈ R〈X〉
}
. (1.7)

Similarly we define the truncated quadratic module of order 2d generated by S:

MS,2d :=
{ N

∑
i=1

a∗i siai | N ∈ N, si ∈ S∪{1}, ai ∈ R〈X〉, deg(a∗i siai)≤ 2d
}
.

By Theorem 1.21 one gets the uniform bound N ≤ 1+σ(2d) = 1+dimR〈X〉2d .
Note that the sets of sums of hermitian squares Σ 2 and Σ 2

2d are special examples
of MS and MS,2d , respectively, corresponding to S =∅.

Definition 1.23. Fix a finite subset S⊆ SymR〈X〉. The semialgebraic set DS asso-
ciated to S is the class of tuples A = (A1, . . . ,An) ∈ Sn of real symmetric matrices
of the same order making s(A) positive semidefinite for every s ∈ S. In case we are
considering only tuples of symmetric matrices of fixed order k ∈ N we shall use
DS(k) := DS∩Sn

k .
We can extend this notion to the set of all bounded self-adjoint operators on a

(possibly infinite dimensional) Hilbert space making s(A) a positive semidefinite

1.5 Gelfand-Naimark-Segal’s construction 25

operator for every s ∈ S. We call this set operator semialgebraic set and denote it by
D∞

S .

Remark 1.24. Clearly, DS ⊆ D∞
S . On the other hand, there are examples of finite

S⊆ SymR〈X〉 with
∅= DS (D∞

S .

For concrete examples, one can start with finitely presented groups that do not admit
finite-dimensional representations, and encode the defining relations of such groups.
Alternately, employ the generalized Clifford algebras that admit infinite dimensional
∗-representations but no finite-dimensional representations, e.g. algebras associated
to Brändén’s Vamos polynomial [Brä11, NT14].

The following is an obvious but important observation:

Proposition 1.25. Let S⊆ SymR〈X〉. If f ∈MS, then f |DS � 0. Likewise f |D∞
S
� 0.

Proof. Indeed, since f ∈MS we have f = ∑
N
i=1 a∗i siai for some N ∈ N, si ∈ S∪{1}

and ai ∈ R〈X〉. For any fixed A ∈ DS it follows by definition that si(A) � 0 for all
si ∈ S∪{1}. Therefore using Remark 1.8 we get

a∗i (A)si(A)ai(A) = ai(A)T si(A)ai(A)� 0.

The proof for the second part is similar.
The converse of Proposition 1.25 is false in general, i.e., nonnegativity on an nc

semialgebraic set does not imply the existence of a weighted sum of squares certifi-
cate. A weak converse holds for positive nc polynomials under a strong boundedness
assumption, see Theorem 1.32 below.

We close this section by giving a last but crucial definition. Archimedeanity of a
quadratic module is a condition we shall refer to frequently in this book.

Definition 1.26. A quadratic module M is archimedean if

∀a ∈ R〈X〉 ∃N ∈ N : N−a∗a ∈M. (1.8)

Note if a quadratic module MS is archimedean, then D∞
S is bounded, i.e., there

is an N ∈ N such that for every A ∈ D∞
S we have ‖A‖ ≤ N. The converse is false

(cf. [KS07]) in general. However, given S⊆ SymR〈X〉with bounded D∞
S , by adding

the redundant constraint g0 := N−∑ j X2
j one can ensure the archimedeanity of the

quadratic module MS′ generated by S′ := S∪{g0} without changing the semialge-
braic set D∞

S = D∞

S′ .

1.5 Gelfand-Naimark-Segal’s construction

The Gelfand-Naimark-Segal theorem is a classical theorem in the well-developed
theory of C∗-algebras which establishes a correspondence between *-representations

26 1 Selected results from algebra and mathematical optimization

of a C∗-algebra and positive linear functionals on it. It is proven by constructing a
*-representation out of a positive linear functional. This process is known as the
Gelfand-Naimark-Segal (GNS) construction. We will use the same construction for
R〈X〉 or R〈X〉d , which are not C∗-algebras. Therefore we have to consider a slightly
different setup as in the classical GNS theorem, but the technique remains the same.
The biggest technical modification is that we need to restrict ourselves to linear
functionals on R〈X〉 which are positive on an archimedean quadratic module.

Theorem 1.27. Let S ⊆ SymR〈X〉 be given such that its quadratic module MS is
archimedean. Let L : R〈X〉 → R be a (nontrivial) linear functional with L(MS) ⊆
R≥0. Then there exists a tuple A = (A1, . . .An) ∈D∞

S and a vector v such that for all
p ∈ R〈X〉:

L(p) = 〈 p(A)v |v〉.

Proof. We consider R〈X〉 as a vector space, acting on itself by left multiplication.
The linear functional L induces the sesquilinear form

(p,q) 7→ L(q∗p) (1.9)

on R〈X〉. This sesquilinear form is positive semidefinite since L is positive on sums
of hermitian squares (cf. Lemma 1.44), hence the Cauchy-Schwarz inequality holds.

Let N = {x ∈ R〈X〉 | (x,x) = 0} denote the nullvectors corresponding to L. By
the Cauchy-Schwarz inequality this set is a vector subspace of R〈X〉. Indeed, for
p,q ∈N and λ ∈ R we have

0≤ (p+λq, p+λq)≤ (p, p)+(q,q)+2|λ ||(p,q)| ≤ 2|λ |
√
(p, p)

√
(q,q) = 0.

Thus the sesquilinear form (1.9) induces an inner product on the quotient space
R〈X〉/N . Set H to be the Hilbert space completion of R〈X〉/N . Since 1 /∈N ,
H is nontrivial. Furthermore, H is separable.

Since L is positive on the archimedean quadratic module MS, there exists an
N ∈ N such that L(p∗(N−X2

i)p) ≥ 0 for all i = 1 . . . ,n (using that there exists an
N ∈ N with N−X2

i ∈MS). Hence

0≤ (Xi p,Xi p) = L(p∗X2
i p)≤ NL(p∗p) (1.10)

This implies that N is a left ideal. Hence the left multiplication by X j (i.e., p 7→X j p)
is well-defined on R〈X〉/N for all j = 1, . . .n. It is also bounded as equation (1.10)
shows as well, and thus extends uniquely to all of H . Now fix an orthonormal basis
of H and let A j denote the corresponding representative of the left multiplication
by X j in B(H) with respect to this basis. Since

(X j p, p) = L((X j p)∗p) = L(p∗(X j p)) = (p,X j p)

holds true for all p ∈ R〈X〉/N and R〈X〉/N is dense in H , the operators A j are
self-adjoint, that is, A∗j = A j.

Now

1.6 Sums of hermitian squares and positivity 27

L(p) = (p,1) = 〈 p(A)v |v〉, (1.11)

where v denotes the vector in H corresponding to the identity polynomial 1. We
claim that A ∈D∞

S . Let g ∈ S. By the density of R〈X〉/N in H any vector u ∈H
can be approximated to arbitrary precision by elements of R〈X〉/N . Hence it is
sufficient to show that 〈g(A)u |u〉 ≥ 0 where we consider u as vector representative
of u ∈ R〈X〉/N . By construction, for any such u exists a polynomial p ∈ R〈X〉
such that u = p(A)v. Now

〈g(A)u |u〉= 〈g(A)p(A)v | p(A)v〉
= 〈(gp)(A)v | p(A)v〉= L(p∗gp).

This proves the claim since p∗gp ∈MS and thus by assumption

L(p∗gp)≥ 0.

Remark 1.28. The general Gelfand-Naimark-Segal construction can be simplified if
we have finite dimensional vector spaces since then the completion is not needed to
obtain a Hilbert space. In this case, we can also replace the condition of positivity of
L on the quadratic module, which has been used to obtain bounded operators, by the
assumption that L is strictly positive on sums of hermitian squares. More concretely,
we will use later on the following statement:

Let L : R〈X〉2d → R be a linear functional strictly positive on Σ 2
2d \ {0}. Then

there exists a tuple of matrices A of order at most σ(2d) and a vector v ∈ Rσ(2d)

such that L is given by L(p) = 〈 p(A)v |v〉 for p ∈ R〈X〉2d−2.

Proof. By our assumption, the linear functional L induces a (positive definite) in-
ner product (p,q) 7→ L(q∗p) on the Hilbert space H = R〈X〉2d . We define the left
multiplication by X j for j = 1, . . . ,n by

X̂ j :R〈X〉2d → R〈X〉2d

p 7→ π(X j p),

where π : R〈X〉2d+2→ R〈X〉2d is the canonical projection of R〈X〉2d+2 to R〈X〉2d .
Remark that X̂ j is defined as X̂ j(p) = X j p as in the classical GNS construction
if p ∈ R〈X〉2d−2. These multiplication maps are well-defined and also symmetric.
Letting A j be the corresponding representative in B(H) = Rσ(2d)×σ(2d), and v ∈
Rσ(2d) be the vector corresponding to the identity polynomial 1, we get the desired
representation of L for polynomials in R〈X〉2d−2.

1.6 Sums of hermitian squares and positivity

A matrix is positive semidefinite if and only if it is a hermitian square (see Theorem
1.3). A similar statement holds true in the case of nc polynomials. It provides the

28 1 Selected results from algebra and mathematical optimization

theoretical underpinning for reformulation of the eigenvalue optimization of an nc
polynomial into a semidefinite programming problem (SDP).

Definition 1.29. An nc polynomial f ∈R〈X〉 is positive semidefinite if f (A1, . . . ,An)
is positive semidefinite for all tuples A = (A1, . . . ,An) ∈ Sn of real symmetric matri-
ces of the same order. Likewise we define positive semidefinite polynomials over a
semialgebraic set DS.

The important characterization of positive semidefinite polynomials as exactly
the sums of hermitian squares of polynomials has been given by Helton [Hel02],
see also [McC01] or [MP05] for different proofs.

Theorem 1.30. For f ∈ R〈X〉 we have f (A) � 0 for all A ∈ Sn if and only if f is a
sum of hermitian squares.

Proof. If f is a sum of hermitian squares, then obviously for all A ∈ Sn the matrix
f (A) ∈ Sn is a sum of hermitian squares of matrices and thus positive semidefinite.

For the converse implication, assume f /∈ Σ 2. Let deg f = 2d−2, then f /∈ Σ 2
2d .

Now, since Σ 2
2d is closed, we can apply the Minkowski separation theorem [Bar02,

Theorem 1.3] on the finite dimensional vector space R〈X〉2d to obtain a strictly
separating linear functional, i.e., there exists a linear functional L : R〈X〉2d → R
such that L(Σ 2

2d)≥ 0 and L(f)< 0. By small changes (if needed) we can guarantee
that L is strictly positive on Σ 2

2d \ {0}. The Gelfand-Naimark-Segal construction
(see Remark 1.28) yields then a tuple of matrices A∈ Sn

σ(2d) and a vector v such that
L(f) = 〈 f (A)v |v〉 ≥ 0 contradicting L(f)< 0.

Remark 1.31. It suffices to consider Σ 2
2d instead of Σ 2 when deg f = 2d since highest

degree terms do not cancel. This has been shown in the proof of Proposition 1.16.

For the constrained setting where one considers positive semidefiniteness of a
polynomial over a given semialgebraic set D∞

S there is the following perfect gener-
alization [HM04, Theorem 1.2] of Putinar’s Positivstellensatz [Put93] for commu-
tative polynomials.

Theorem 1.32. Let S∪{ f} ⊆ SymR〈X〉 and suppose that MS is archimedean. If
f (A)� 0 for all A ∈D∞

S , then f ∈MS.

Proof. Since the argument is standard and resembles the proof of Theorem 1.30,
we only present a sketch. Assume that f /∈ MS. By archimedeanity of MS, there is
a linear functional L : SymR〈X〉 → R with L(f) < 0 and L(MS) ⊆ R≥0. The GNS
construction (Theorem 1.27) then yields a tuple A = (A1 . . . ,An) ∈ D∞

S of bounded
self-adjoint operators and a vector v such that 0 > L(f) = 〈 f (A)v |v〉, contradicting
the positive definiteness of f .

Remark 1.33. In general it does not suffice to test for positive definiteness of f on
DS (as opposed to D∞

S) in Theorem 1.32; cf. Remark 1.24 above. However, if DS is
convex [HM04, Section 2], then it is by [HM12] an LMI (linear matrix inequality)
domain DL. In this case every polynomial positive semidefinite on DL admits a
weighted sum of squares certificate with optimal degree bounds [HKM12].

1.7 Vanishing nc polynomials 29

1.7 Vanishing nc polynomials

We present some facts about vanishing nc polynomials which are needed later on.
The following results are basically consequences of the standard theory of polyno-
mial identities, cf. [Row80]. They all essentially boil down to the well–known fact
that there are no nonzero polynomial identities that hold for all orders of (symmet-
ric) matrices. In fact, it is enough to test on an ε-neighborhood of 0.

Definition 1.34. For ε > 0 we introduce

Nε =
⋃
k∈N

{
A = (A1, . . . ,An) ∈ Sn

k | ε2−
n

∑
i=1

A2
i � 0

}
=
⋃
k∈N

{
A = (A1, . . . ,An) ∈ Sn

k |
∥∥∥[A1 · · · An

]T∥∥∥≤ ε

}
,

(1.12)

the nc ε-neighborhood of 0. (Unless mentioned otherwise, all our norms are as-
sumed to be operator norms, i.e., ‖A‖ = sup

{
‖Ax‖ | ‖x‖ = 1

}
.) We will also refer

in the sequel to Nε(N) = Sn
N
⋂

Nε .

Lemma 1.35. If f ∈ R〈X〉 is zero on Nε for some ε > 0, then f = 0.

Proof. This follows from the following: an nc polynomial of degree < 2d that van-
ishes on all n-tuples of symmetric matrices A∈Nε(N), for some N ≥ d, is zero (us-
ing the standard multilinearization trick and e.g. [Row80, Section 2.5, Section 1.4]).

Lemma 1.36. Suppose f ∈ R〈X〉 and let ε > 0. If f (A) is singular for all A ∈Nε ,
then f = 0.

Proof. Let A ∈ Sn
k for some k ∈N be arbitrary. Then p(t) = det f (tA) is a real poly-

nomial in t. By assumption it vanishes on all small enough t > 0. Hence p = 0 as
every polynomial of finite degree in one real variable has only finitely many zeros.
This implies f (A) is singular for all k ∈ N and all A ∈ Sn

k .
Now consider the ring GM2`(n) of n symmetric 2`× 2` generic matrices. It is a

PI ring and a domain, so admits a skew field of fractions UD2`(n) [Pro76, PS76].
However, by the Cayley-Hamilton theorem, the image f̌ of f in UD2`(n) is a zero
divisor, so f̌ = 0, i.e., f is a polynomial identity for symmetric 2`× 2` matrices.
Since ` was arbitrary, this yields f = 0.

In our subsequent analysis, we will need to deal with neighborhoods of non-
scalar points A. Given A ∈ Sn

k , let

B(A,ε) =
⋃
`∈N

{
B ∈ Sn

k` | ‖B− I`⊗A‖ ≤ ε
}

denote the nc neighborhood of A. These are used to define topologies in free analysis
[KVV14].

30 1 Selected results from algebra and mathematical optimization

Proposition 1.37. Suppose f ∈R〈X〉, ε > 0, and let A ∈ Sn
2k . If f (B) is singular for

all ` ∈ N and all B ∈B(A,ε)(2k+`), then f = 0.

Proof. For ` ∈ N and B ∈ Sn
2k+` consider the univariate polynomial ΦB defined by

t 7→ det f (I2` ⊗A+ tB).

By assumption, ΦB vanishes for all t of small absolute value. Hence by analyticity it
vanishes everywhere. We can now proceed as in the proof of Lemma 1.36 to deduce
f is a polynomial identity for symmetric matrices of all orders, whence f = 0.

The following technical proposition, which provides the closedness of a quadratic
module MS, is a variant of a Powers-Scheiderer result [PS01, Section 2].

Proposition 1.38. Suppose S = {g1, . . . ,gt} ⊆ SymR〈X〉 is such that DS contains
an ε-neighborhood of 0. Then MS,2d is a closed convex cone in the finite dimensional
real vector space SymR〈X〉2d .

For the proof of this proposition we need to isolate a (possibly) non-scalar point
and its neighborhood where all the g j are positive definite:

Lemma 1.39. Suppose 0 6∈ S = {g1, . . . ,gt} ⊆ SymR〈X〉 is such that DS contains
an ε-neighborhood of 0. Then there is an A ∈ Sn

2k and ε̄ > 0 such that all g j are
positive definite on B(A, ε̄).

Proof. By Proposition 1.37, we find δ1 > 0 and A1 ∈Nδ1(2
k1) such that g1(A1)� 0.

Then there is an ε1 > 0 such that g1(B)� 0 for all B ∈B(A1,ε1).
Now g2 is not singular everywhere on B(A1,ε1) by Proposition 1.37. Hence

we find A2 ∈ B(A1,ε1)(2k2) with g2(A2) � 0, and a corresponding ε2 > 0 with
g2|B(A2,ε2)

� 0. Without loss of generality, B(A2,ε2) ⊆B(A1,ε1). We repeat this
procedure for g3, . . . ,gt . Finally, setting A=Ar, ε̄ = εr yields the desired conclusion.

Proof (Proposition 1.38). By Lemma 1.39, we find an ε̄ > 0 and A ∈ Sn
k such that

g j(B)� 0 for all j and all B ∈B(A, ε̄). Using B(A, ε̄) we norm R〈X〉2d by

|||p||| := sup
{
‖p(B)‖ | B ∈B(A, ε̄)

}
.

Let δ > 0 be a lower bound on all the g j(B) for B ∈B(A, ε̄), i.e., g j(B)− δ I � 0
for all B ∈B(A, ε̄).

Now the proof of the proposition follows a standard argument, and is essentially a
consequence of Theorem 1.21. Suppose now (pm)m is a sequence from MS,2d which
converges to some p ∈ R〈X〉 of degree at most 2d. By Theorem 1.21 there is an
` (at most the dimension of R〈X〉2d plus one) such that for each m there exist nc
polynomials rm,i ∈ R〈X〉d and tm,i, j ∈ R〈X〉d such that

pm =
`

∑
i=1

r∗m,irm,i +
r

∑
j=1

`

∑
i=1

t∗m,i, jgitm,i, j.

1.8 Hankel matrices and flatness 31

Since |||pm||| ≤ N2 for some N > 0, it follows that |||rm,i||| ≤ N and likewise we get∣∣∣∣∣∣∣∣∣t∗m,i, jg jtm,i, j

∣∣∣∣∣∣∣∣∣ ≤ N2. In view of the choice of ε,δ , we obtain
∣∣∣∣∣∣tm,i, j

∣∣∣∣∣∣ ≤ 1√
δ

N for
all i,m, j. Hence for each i, j, the sequences (rm,i) and (tm,i, j) are bounded in m.
They thus have convergent subsequences. Tracking down these subsequential limits
finishes the proof.

Proposition 1.38 allows us to deduce the following separation result:

Corollary 1.40. Let S ⊆ SymR〈X〉. Assume DS contains an ε-neighborhood of 0,
and f ∈ SymR〈X〉2d \MS,2d . Then there exists a linear functional L : R〈X〉2d → R
which is nonnegative on MS,2d , strictly positive on nonzero elements of Σ 2

2d , and with
L(f)< 0.

Proof. The existence of a separating linear functional L follows from Proposition
1.38 and the Minkowski separation theorem [Bar02, Theorem 1.3]. If necessary, add
a small multiple of a linear functional strictly positive on Σ 2

d \{0}, and the proof is
complete.

1.8 Hankel matrices and flatness

Following standard definitions and notation [BV04] the dual cone of Σ 2
2d is defined

by

(Σ 2
2d)
∨ := {L : R〈X〉2d → R | L linear, L(f) = L(f ∗), L(f)≥ 0 ∀ f ∈ Σ

2
2d}.

In this section we will present an alternative representation of linear functionals in
(Σ 2

2d)
∨ by positive semidefinite matrices, and define the concept of flatness for them.

Definition 1.41. Given g ∈ SymR〈X〉 and a linear functional L : R〈X〉2d → R we
can associate to L two matrices:

(i) An nc Hankel matrix HL, indexed by words u,v ∈ 〈X〉d , with

(HL)u,v = L(u∗v);

(ii) A localizing matrix H⇑L,g indexed by words u,v ∈ 〈X〉d−ddeg(g)/2e with

(H⇑L,g)u,v = L(u∗gv).

We say that L is unital if L(1) = 1, and we call L symmetric if L(f ∗) = L(f) for all
f in the domain of L.

Hankel matrices are closely related to the Hankel condition.

Definition 1.42. A matrix H indexed by words of length≤ d satisfies the nc Hankel
condition if and only if

Hu1,v1 = Hu2,v2 whenever u∗1v1 = u∗2v2. (1.13)

32 1 Selected results from algebra and mathematical optimization

Remark 1.43. Symmetric linear functionals on R〈X〉2d and matrices from Sσ(d) sati-
sfying the nc Hankel condition are in bijective correspondence. To each symmetric
L : R〈X〉2d → R we can assign HL ∈ Sσ(d) defined by (HL)u,v = L(u∗v) and vice
versa. The following lemma relates positivity of L and positive semidefinitness of
its Hankel matrix HL.

Lemma 1.44. Let g ∈ SymR〈X〉 and let L : R〈X〉2d → R be a symmetric linear
functional. Then the following holds:

(i) L(p∗p)≥ 0 for all p ∈ R〈X〉d (i.e., L is positive) if and only HL � 0.
(ii) L(p∗gp)≥ 0 for all p ∈ R〈X〉d−ddeg(g)/2e if and only if H⇑L,g � 0.

Proof. For p = ∑w pww ∈ R〈X〉d let p ∈ Rσ be the vector consisting of all coeffi-
cients pw of p. Then the first statement follows from

L(p∗q) = ∑
u,v

puqvL(u∗v) = ∑
u,v

puqv(HL)u,v = pT HLq.

The second statement follows similarly by verifying

L(p∗gq) = pT H⇑L,gq.

If we summarize Proposition 1.16 and Lemma 1.44, we obtain the following
identifications.

Corollary 1.45.

Σ
2
2d
 {G ∈ Sσ(d) | G� 0}

(Σ 2
2d)
∨
 {H ∈ Sσ(d) | Hu1,v1 = Hu2,v2 whenever u∗1v1 = u∗2v2, H � 0}.

We mention that these identifications are not isomorphisms since, e.g., a sum of
hermitian squares usually has more than one positive semidefinite Gram matrix G
representing it.

Hankel matrices which satisfy the so-called flatness condition will play a crucial
role later on.

Definition 1.46. Let A ∈ Rs×s be a symmetric matrix. An extension of A is a sym-
metric matrix Ã ∈ R(s+∆)×(s+∆) of the form

Ã =

[
A B

BT C

]
for some B ∈ Rs×∆ and C ∈ R∆×∆ .

By Proposition 1.11, Ã� 0 if and only if A� 0, and there is some Z with

B = AZ and C � ZT AZ. (1.14)

This characterization is useful to define what we understand as a flat matrix.

1.9 Commutators, cyclic equivalence and trace zero polynomials 33

Definition 1.47. An extension Ã of A is flat if rank A = rank Ã, or, equivalently, if
B = AZ and C = ZT AZ for some matrix Z.

For a comprehensive study of flatness in functional analysis we refer the reader to
[CF96, CF98]. We shall only need some basic properties for flat matrix extensions,
see for instance [CF96, Lemma 5.2] or [CF98, Prop. 2.1].

Lemma 1.48. Let Ã be a flat extension of A as in Definition 1.47. Then the following
statements hold.

(i) ker Ã = ker[A B];
(ii) x ∈ kerA =⇒ [x 0]T ∈ ker Ã;

(iii) A� 0 if and only if Ã� 0.

Proof. We have rank Ã ≥ rank [A B] ≥ rankA. Since rank A = rank Ã, equality
holds, which implies (i). To show (ii) let x ∈ kerA. Since Ã is a flat extension of
A there is a matrix Z such that B = AZ. Hence we have BT x = 0, which implies
[x 0]T ∈ ker Ã. For the last statement let Z ∈ Rs×∆ be given such that B = AZ and
C = ZT AZ. Let v =

[
a b
]T ∈ Rs+∆ with a ∈ Rs and b ∈ R∆ be given. Then one

easily verifies that
vT Ãv = (a+Zb)T A(a+Zb),

which implies (iii).
If Ã � 0 we can express its deviation from flatness, using the Frobenius norm

‖ ‖F , by

errflat :=
‖C−ZT AZ‖F

1+‖C‖F +‖ZT AZ‖F
. (1.15)

Here Z is as in (1.14); it is easy to see that errflat is independent of the choice of
Z.

Using the definition of flat matrices we define when a linear functional is consid-
ered to be flat.

Definition 1.49. Suppose L : R〈X〉2d+2δ → R is a linear functional with restriction
Ľ : R〈X〉2d → R. We associate to L and Ľ the Hankel matrices HL and HĽ, respec-
tively and get the block form

HL =

[
HĽ B
BT C

]
.

We say that L is δ -flat, or that L is a flat extension of Ľ, if HL is flat over HĽ.

1.9 Commutators, cyclic equivalence and trace zero polynomials

We proceed with our analysis of vanishing nc polynomials. But this time we con-
sider nc polynomials with vanishing trace. This will be useful in Chapter 5 where
we perform trace-optimization.

34 1 Selected results from algebra and mathematical optimization

It is well-known and easy to see that trace zero matrices are (sums of) commu-
tators. To mimic this property for nc polynomials, we introduce cyclic equivalence
[KS08a]:

Definition 1.50. An element of the form [p,q] := pq−qp for p,q ∈ R〈X〉 is called
a commutator. Two nc polynomials f ,g ∈ R〈X〉 are called cyclically equivalent
(f

cyc∼ g) if f −g is a sum of commutators:

f −g =
k

∑
i=1

[pi,qi] =
k

∑
i=1

(piqi−qi pi) for some k ∈ N and pi,qi ∈ R〈X〉.

It is clear that
cyc∼ is an equivalence relation. The following proposition shows that

it can be easily tested and motivates its name.

Proposition 1.51.

(i) For v,w ∈ 〈X〉, we have v
cyc∼ w if and only if there are v1,v2 ∈ 〈X〉 such that

v = v1v2 and w = v2v1, i.e., if and only if w is a cyclic permutation of v.
(ii) Nc polynomials f = ∑w aww and g = ∑w bww (with aw,bw ∈ R) are cyclically

equivalent if and only if for each v ∈ 〈X〉,

∑
w∈〈X〉

w
cyc
∼ v

aw = ∑
w∈〈X〉

w
cyc
∼ v

bw. (1.16)

Proof. For the first case, v
cyc∼ w if and only if v−w is a commutator. Then the

statement is obvious. For the second statement, by linearity of the commutator, we
can split up any sum of commutators of polynomials into a sum of commutators of
words. Hence we can split up f −g into groups of cyclically equivalent words. Then
the statement follows by comparing coefficients.

This notion is important for us because symmetric trace zero nc polynomials
are exactly sums of commutators [KS08a, Theorem 2.1]. In other words, they are
cyclically equivalent to the zero polynomial.

Definition 1.52. An nc polynomial p ∈ SymR〈X〉 is a trace zero nc polynomial if

tr p(A) = 0 for all A ∈ Sn.

As in Lemma 1.35 it suffices to test for vanishing trace on an ε-neighborhood
Nε of 0 (see Definition 1.34); see also [BK09] for an alternative proof.

Lemma 1.53. If f ∈ SymR〈X〉 has zero trace on Nε for some ε > 0, then f is a
sum of commutators, i.e., f

cyc∼ 0.

Remark 1.54. The assumption that f is symmetric is crucial for the lemma. Indeed,
the polynomial X1X2X3−X3X2X1 is a trace zero polynomial but not a sum of com-
mutators.

1.10 Cyclic quadratic modules and trace-positivity 35

We can get an even stronger result for polynomials in a quadratic module.

Lemma 1.55. Let S = {g1, . . . ,gt} ⊆ SymR〈X〉. Assume that the semialgebraic set
DS contains an ε-neighborhood of 0, and

∑
j

h∗jh j +∑
i, j

r∗i jgiri j
cyc∼ 0. (1.17)

Then h j = ri j = 0 for all i, j.

Proof. Let A, ε be such that gi � 0 on B(A,ε) for all i = 1, . . . ,r, see Lemma 1.39.
For each B ∈B(A,ε) we have

∑
j

trh j(B)∗h j(B)+∑
i, j

trri j(B)∗gi(B)ri j(B) = 0

by (1.17). Hence h j(B) = ri j(B) = 0. Now apply Proposition 1.37.

1.10 Cyclic quadratic modules and trace-positivity

Using cyclic equivalence one can define a tracial variant of a quadratic module as-
sociated to a semialgebraic set. Let S ⊆ SymR〈X〉 with corresponding quadratic
module MS and its truncated variant MS,2d , see Section 1.4 for definitions.

Definition 1.56. We set

Θ
2
S,2d = { f ∈ SymR〈X〉 | ∃g ∈MS,2d : f

cyc∼ g}

Θ
2
S =

⋃
d∈N

Θ
2
S,2d ,

and call Θ 2
S the cyclic quadratic module generated by S, and Θ 2

S,2d the truncated
cyclic quadratic module generated by S.

When S = {g1, . . . ,gt} is finite, every element f of Θ 2
S,2d is cyclically equivalent to

an element of the form

N

∑
k=1

a∗kak +
r

∑
i=1

Ni

∑
j=1

b∗i j gi bi j ∈MS,2d (1.18)

for some ak,bi j ∈ R〈X〉 with degak ≤ d and deg(b∗i jgibi j)≤ 2d.
By Theorem 1.21 one gets again uniform bounds for the number of polynomials

needed: N,Ni ≤ 1+σ(2d) = 1+dimR〈X〉2d .

Definition 1.57. If S =∅, we call Θ 2
S (shortly denoted by Θ 2) the cone of nc poly-

nomials cyclically equivalent to a sum of hermitian squares.

The cyclic quadratic module Θ 2
S,2d is closed as MS,2d is closed.

36 1 Selected results from algebra and mathematical optimization

Proposition 1.58. Suppose S = {g1, . . . ,gt} ⊆ SymR〈X〉 and assume DS contains
an ε-neighborhood of 0. Then Θ 2

S,2d is a closed convex cone in the finite dimensional
real vector space R〈X〉2d . In particular, if f ∈ SymR〈X〉2d \Θ 2

S,2d then there exists
a tracial linear functional L : R〈X〉2d → R which is nonnegative on Θ 2

S,2d , positive
on Σ 2

2d \{0} with L(f)< 0.

Proof. With Lemma 1.55 at hand, the proof of this corollary is the same as that of
Proposition 1.38 so is omitted.

Elements in the cyclic quadratic module model polynomials which are positive
with respect to the trace. To facilitate our research of the trace, we need to consider a
distinguished subset of D∞

S (see Definition 1.23) obtained by restricting our attention
from the algebra of all bounded operators B(H) on a Hilbert space H (which
does not admit a trace if H is infinite dimensional) to finite von Neumann algebras
[Tak03]. One usually distinguishes between finite von Neumann algebras of type I
and type II, the first being full matrix algebras and the second its infinite dimensional
analog.

Definition 1.59. Let F be a type II1-von Neumann algebra [Tak03, Chapter 5], and
let DF

S be the F -semialgebraic set generated by S; that is, DF
S consists of all tuples

A = (A1, . . . ,An) ∈F n making s(A) a positive semidefinite operator for every s ∈ S.
Then

D II1
S :=

⋃
F

DF
S ,

where the union is over all type II1-von Neumann algebras F with separable pred-
ual, is called the von Neumann (vN) semialgebraic set generated by S.

As for the positive semidefinite case we define what we mean by a positive poly-
nomial when considering the trace.

Definition 1.60. We say an nc polynomial f ∈ R〈X〉 is trace-positive if

tr f (A)≥ 0 for all tuples A = (A1, . . . ,An) ∈ Sn (1.19)

of real symmetric matrices of the same order. We call it trace-positive on DS if
tr f (A)≥ 0 for all tuples A ∈DS; and similarly for D II1

S , where the matricial trace as
in (1.1) is replaced by the canonical trace-function in the corresponding finite von
Neumann algebra (which we will also denote by tr), see [Tak03].

Remark 1.61. There are inclusions

DS ⊆D II1
S ⊆D∞

S ; (1.20)

here the first is obtained via embedding matrix algebras in the hyperfinite II1-factor
R, and for the second inclusion simply consider a separable II1-factor as a subalge-
bra of B(H).

Whether the first inclusion in (1.20) is “dense” in the sense that a polynomial
f ∈ R〈X〉 is trace-positive on DS iff f is trace-positive on D II1

S is closely related to

1.10 Cyclic quadratic modules and trace-positivity 37

Connes’ embedding conjecture [Con76, KS08a], a deep and important open prob-
lem in operator algebras. To sidestep this problem, we shall focus on values of nc
polynomials on D II1

S instead of DS.

As for the positive semidefinite case we have the immediate observation:

Proposition 1.62. Let S ⊆ SymR〈X〉. If f ∈Θ 2
S , then tr f (A)≥ 0 for A ∈DS. Like-

wise tr f (A)≥ 0 for A ∈D II1
S .

However, unlike in the positive semidefinite case, there are trace-positive poly-
nomials which are not members of Θ 2. Surprisingly, the situation is in perfect anal-
ogy to non-homogeneous polynomials in commuting variables. Besides the univari-
ate case, trace-positive quadratics and bivariate quartics (i.e., polynomials in two
variables of degree four), are always sums of hermitian squares and commutators
[BK10], but in all other cases this is not true any more. The easiest example for a
trace-positive nc polynomials which is not a member of Θ 2 is the non-commutative
Motzkin polynomial [KS08a, Example 4.4]

X1X4
2 X1 +X2X4

1 X2−3X1X2
2 X1 +1. (1.21)

An example in three variables is the nc polynomial

X2
1 X2

2 +X2
1 X2

3 +X2
2 X2

3 −4X1X2X3,

see [Qua15, Theorem 3.4]. We also refer the reader to [KS08b, Example 3.5] for
more sophisticated examples (of homogeneous polynomials) obtained by consider-
ing the BMV conjecture.

Nevertheless, the obvious certificate for trace-positivity – being a sum of her-
mitian squares and commutators – turns out to be useful in optimization. We also
have a tracial version of Theorem 1.32. It provides the theoretical underpinning for
the tracial version of Lasserre’s relaxation scheme (presented in Section 5.3 below)
used to minimize the trace of an nc polynomial.

Proposition 1.63. Let S∪{ f} ⊆ SymR〈X〉 and suppose that MS is archimedean.
Then the following are equivalent:

(i) tr f (A)≥ 0 for all A ∈D II1
S ;

(ii) for all ε > 0 there exists g ∈MS with f + ε
cyc∼ g.

Proof. Since the argument is standard, we only present a sketch of the proof. The
implication (ii) ⇒ (i) is obvious. For the converse, assume ε > 0 is such that the
conclusion of (ii) fails. By archimedeanity of MS, there is a tracial linear functional
L : SymR〈X〉 → R with L(f + ε) ≤ 0, L(MS) ⊆ R≥0. The Gelfand-Naimark-Segal
construction as in Theorem 1.27 yields then bounded self-adjoint operators A j . The
double commutant of A , the algebra generated by the bounded operators A j, is then
a finite von Neumann algebra with trace tr . But by the GNS construction we have
tr f (A) = L(f)≤−ε < 0, contradicting (i).

38 1 Selected results from algebra and mathematical optimization

Note that assumption (i) implies trace-positivity of f on the hyperfinite II1-factor
R [Tak03] and hence on all finite type I von Neumann algebras, i.e., on all full
matrix algebras over R.

Remark 1.64. The dual cone (Θ 2
2d)
∨ consists of symmetric linear functionals which

are non-negative on Σ 2 and on commutators. We can associate to each linear func-
tional L ∈ (Θ 2

2d)
∨ its Hankel matrix HL, which is positive semidefinite and is given

by (HL)u,v = L(u∗v) for indexing words u,v∈ 〈X〉d , exactly as for linear functionals
L ∈ (Σ 2

2d)
∨. Since L is nonnegative (actually it is zero) on commutators, the Hankel

matrix HL is invariant under cyclic equivalence, i.e., (HL)u,v = (HL)w,z whenever
u∗v

cyc∼ w∗z for u,v,w,z ∈ 〈X〉d . In this case we call L tracial, and HL is a tracial
Hankel matrix.

1.11 Wedderburn’s theorem

The Wedderburn theorem classifies simple finite dimensional k-algebras as matrix
algebras over a division ring, see [Lam01, Chapter 1] for more details and proofs.

Definition 1.65. A ring R is simple if its only ideals are {0} and R itself.

Theorem 1.66 (Wedderburn). Let R be a simple finite dimensional k-algebra. Then
R∼= Dn×n for some division ring D, where D is unique up to isomorphism.

Furthermore, the division ring D is also a division algebra which implies that D = k
if k is algebraically closed. Theorem 1.66 is also useful in combination with the
following theorem of Frobenius [Lam01, (13.12)].

Theorem 1.67 (Frobenius). Any finite-dimensional associative division algebra
over R is isomorphic to either R,C or H, where H denotes the quaternions.

This immediately leads to the fact that the only central simple algebras over R
are the full matrix algebras over R, C or H. This can be used to characterize positive
linear functionals on ∗-subalgebras of Rs×s which are zero on commutators.

Proposition 1.68. Let A be a ∗-subalgebra of Rs×s for some s ∈N and L : A →R
be a positive linear functional with L(pq−qp) = 0 for all p,q∈A . Then there exist
full matrix algebras A (i) over R, C or H, a ∗-isomorphism

A →
N⊕

i=1

A (i), (1.22)

and λ1, . . . ,λN ∈ R≥0 with ∑i λi = 1, such that for all A ∈A ,

L(A) =
N

∑
i=1

λitrA(i),

1.12 Curto-Fialkow’s theorems 39

where the A(i) come from
⊕

i A(i), the image of A under the isomorphism (1.22). The
order of (the real representation of)

⊕
i A(i) is at most s.

Proof. By orthogonal transformation one can derive that A has block diagonal form
as in (1.22). Each of the blocks A (i) acts irreducibly on a subspace of Rs and is thus
a central simple algebra (with involution) over R. Knowing that the A (i) are full
matrix algebras over R, C or H one can use Galois theory to derive that the only
possibility for L|A (i) is the matricial trace.

1.12 Curto-Fialkow’s theorems

Curto and Fialkow studied necessity and sufficiency conditions for the classical trun-
cated moment problem, i.e., which linear functionals on R[x]2d can be expressed
by integration over a positive measure. One main condition which guarantees such
a moment representation is flatness of the corresponding Hankel matrix. We will
present non-commutative versions of their theorems in this section. The proofs
will use several results presented previously in this chapter, namely the Gelfand-
Naimark-Segal construction and the Wedderburn theorem. For the definition of flat-
ness we refer to Definition 1.49.

Theorem 1.69. Let S = {g1, . . . ,gt}⊆ SymR〈X〉 and set δ =max{ddeg(gi)/2e,1}.
Let L : R〈X〉2d+2δ → R be a unital linear functional satisfying L(MS,2d+2δ)⊆ R≥0.
If L is δ -flat, then there exist A ∈DS(r) for some r ≤ σ(d) and a unit vector v such
that

L(f) = 〈 f (A)v |v〉.

Remark 1.70. The 1 in the definition of δ is only taken into account if S is the empty
set. As we will see in the proof, r can be chosen to be the rank of the Hankel matrix
HL of L.

Proof. The representation of the δ -flat linear functional follows from the finite-
dimensional variant of the Gelfand-Naimark-Segal construction. Let rankHL = r.
Since the nc Hankel matrix HL is positive semidefinite, we can find a Gram decom-
position HL = [〈u |w〉]u,w with vectors u,w ∈ Rr, where the labels are words of
degree at most d +δ . Using this decomposition we set

H = span{w | degw≤ d +δ}.

By the flatness assumption one gets that

H = span{w | degw≤ d +δ}= span{w | degw≤ d}. (1.23)

On H we now perform the Gelfand-Naimark-Segal construction. The linear func-
tional L defines an inner product on H via

(p,q) 7→ L(q∗p),

40 1 Selected results from algebra and mathematical optimization

thus H is a finite dimensional Hilbert space. Hence we can directly consider the
operators Ai representing the left multiplication by Xi on H , i.e., Xiw = Xiw. Since
by equation (1.23) we only need to consider words w with degw ≤ d, the resulting
word Xiw is of degree d +1≤ d +δ . Hence the Ai are well-defined. The remaining
part of the proof follows the proof of Theorem 1.27. With a similar line of reasoning
one derives that the Ai are symmetric, A = (A1, . . . ,An) ∈ DS(r), and that with v
being the vector representing 1 one gets the desired representation

L(f) = 〈 f (A)v |v〉.

In the tracial case we also need to use the Wedderburn theorem as an additional
ingredient in the proof. Recall that a linear functional L : R〈X〉 →R is tracial if L is
0 on commutators.

Theorem 1.71. Let S = {g1, . . . ,gt}⊆ SymR〈X〉 and set δ =max{ddeg(gi)/2e,1}.
Let L :R〈X〉2d+2δ →R be an unital tracial linear functional with L(Θ 2

S)⊆R≥0. If L
is δ -flat, then there are finitely many n-tuples A(j) of symmetric matrices in DS(N)
for some N < 4σ(d) and positive scalars λ j > 0 with ∑ j λ j = 1 such that for all
p ∈ R〈X〉2d:

L(p) = ∑
j

λ jtr p(A(j)).

Again, we can replace the bound 4σ(d) by 4r, where r is the rank of the tracial
Hankel matrix of L, which is in turn bounded by σ(d).

Proof. As in the previous theorem we perform the finite dimensional Gelfand-
Naimark-Segal construction resulting in a tuple A = (A1, . . . ,An) ∈DS(σ(d)) and a
unit vector v such that

L(p) = 〈 p(A)v |v〉. (1.24)

To get a tracial representation let A be the subalgebra generated by the symmet-
ric matrices A j. Since the Hermitian square of a nonzero matrix is not nilpotent,
A is semisimple. By Proposition 1.68, which is a consequence of the Wedderburn
theorem 1.66, A can be (orthogonally) block diagonalized into

A =⊕k
j=1A j. (1.25)

where the Ai are simple full matrix algebras over R, C or H. With respect to the
decomposition (1.25), A j = ⊕k

`=1A`
j. Each A`

j is a symmetric matrix, and the tuple
A` ∈DS. Without loss of generality each A`

j is a real matrix; if one of the blocks A j
is a matrix algebra over C or H, we embed it into the real matrix algebra (of twice
the order for C and four times the order for H).

By (1.24) we can consider L to be a tracial linear functional on A . Then L induces
tracial R–linear functionals L j on the simple ∗-algebras A j. If p(A) = B =⊕k

j=1B j,
then

L(p) = ∑
j

L j(B j).

Each L j is a positive multiple, say λ j, of the usual trace [BK12, Lemma 3.11]. Thus

1.12 Curto-Fialkow’s theorems 41

L(p) = ∑
j

L j(B j) = ∑
j

λ jtr p(A j).

Since L(1) = 1, ∑ j λ j = 1.

Implementation

We summarize the procedures described in the proofs of Theorems 1.27 and 1.69
into an algorithm that we call GNS construction.

Algorithm 1.1: GNS construction
Input: HL, Hankel matrix of L satisfying assumptions of Theorem 1.69

1 Find C = [w1, . . . ,wr] - matrix with linearly independent columns of HL,
corresponding to words wi with degwi ≤ d. Take w1 = 1;

2 Let HL̂ be the principal submatrix of HL consisting of columns and rows
corresponding to words w1, . . . ,wr;

3 Compute by Cholesky factorization G such that GT G = HL̂;
4 for i = 1, ...,n do
5 Let Ci = [Xiw1, . . .Xiwr];
6 Compute Āi as solution of the system C Āi = Ci;
7 Let Ai = GĀiG−1;
8 end
9 Compute v = Ge1;

Output: (A1, . . . ,An), v;

Remark 1.72. Algorithm 1.1 returns exactly the n tuple of matrices and the vector
from Theorem 1.69. Note that the matrices Āi represent linear mappings w 7→ Xiw
in the basis C , while Ai are these mappings in the standard orthonormal basis of Rr.

The main ingredients of the proof of Theorem 1.71 are summarized as Algorithm
1.2.

Algorithm 1.2: GNS-Wedderburn construction
Input: L satisfying assumptions of Theorem 1.71

1 Compute A = (A1, . . . ,An) and v by Algorithm 1.1;
2 Let A be the algebra generated by Ai, i = 1, . . . ,n. Compute orthogonal Q

such that QT A Q = {Diag(B1, . . . ,Bk) | Bi ∈Ai}, where Ai are simple
algebras over R. Let Âi = QT AiQ = Diag(Â1

i , . . . , Â
k
i). Then

L(p) = 〈p(A)v,v〉= 〈p(Â)QT v,QT v〉= ∑
k
j=1〈p(Â

j
)v̂ j, v̂ j〉 where v̂ j is the

j-th part of QT v;

3 L induces L j on A j by L j(B j) = 〈p(Â j)v̂ j, v̂ j〉, where B j = p(Â
j
);

4 L j is tracial with L j(B j) = λ jtr(B j), where λ j = tr(I j) = ‖v̂ j‖2 (note that
‖v̂‖2 = 1);

Output: (Â1, . . . , Ân), (λ1, . . . ,λk).

42 1 Selected results from algebra and mathematical optimization

Remark 1.73. Note that we can compute the matrix Q in Step 2 by Algorithm 4.1
from [MKKK10]. The implementation of the GNS-Wedderburn construction in
NCSOStools is indeed based on this algorithm.

1.13 Semidefinite programming

Semidefinite programming (SDP) is a subfield of convex optimization concerned
with the optimization of a linear objective function over the intersection of the cone
of positive semidefinite matrices with an affine space. More precisely, given sym-
metric matrices C, A1, . . . , Am of the same order over R and a vector b ∈ Rm, we
formulate a semidefinite program in standard primal form (in the sequel we refer to
problems of this type by (PSDP)) as follows:

inf 〈C |G〉
s. t. 〈Ai |G〉 = bi, i = 1, . . . ,m

G � 0.
(PSDP)

Here 〈 | 〉 stands for the standard scalar product of matrices: 〈A |B〉= trBT A. The
dual problem to (PSDP) is the following semidefinite program in standard dual form

sup 〈b |y〉
s. t. ∑i yiAi �C.

(DSDP)

Here y ∈ Rm and the difference C−∑i yiAi is usually denoted by Z. If C = 0
then (PSDP) is a semidefinite programming feasibility problem (in standard primal
form):

G � 0,
s. t. 〈Ai,G〉 = bi, i = 1, . . . ,m.

(FSDP)

The primal-dual pair of semidefinite programming problems (PSDP)–(DSDP)
are strongly related. These relations are collected in the duality theory. We state
some of the most well-known results. They can be found e.g.,in [dK02, Hel00].

Theorem 1.74 (Weak duality). Let G be a feasible solution for (DSDP) and (y,Z)
a feasible solution for (DSDP). We have

bT y≤ 〈C |G〉

with equality holding if and only if 〈G |Z 〉= 0.

Proof. This theorem shows that every feasible solution for (PSDP) gives an upper
bound for the optimal value of (DSDP), and similarly every feasible solution for the
(DSDP) yields a lower bound for the optimal value of (PSDP). We know that G and
Z =C−∑i yiAi are positive semidefinite, therefore 〈G |Z 〉 ≥ 0. This implies that:

http://ncsostools.fis.unm.si/

1.13 Semidefinite programming 43

〈C |G〉−bT y = 〈C |G〉−∑
i
〈Ai |G〉yi

= 〈C−∑
i

yiAi |G〉= 〈Z |G〉 ≥ 0.

We call the nonnegative quantity 〈C |G〉−bT y a duality gap. If we have primal
and dual feasible solutions G and (y,Z) with zero duality gap, then obviously these
solutions are optimal. The converse is not always true. It holds for the case of linear
programming, but for SDP and more general conic programming problems we need
additional assumptions for this conclusion to hold.

Let OPTP and OPTD be the optimal values of (PSDP) and (DSDP), respectively.
From the weak duality theorem we know that OPTP−OPTD ≥ 0. We call this dif-
ference the optimal duality gap. We say that (PSDP) and (DSDP) have the strong
duality property if the optimal duality gap is zero. There are some sufficient condi-
tions for the strong duality property that we are going to present.

Definition 1.75 (Strict feasibility). The SDP (PSDP) is strictly feasible if there
exists G� 0 such that 〈Ai |G〉= bi, ∀i. The SDP (DSDP) is strictly feasible if there
exist y ∈ Rm and Z � 0 such that ∑i yiAi +Z =C.

The strict feasibility condition is also known as the Slater condition.

Theorem 1.76 (Strong duality). If the primal problem (PSDP) is strictly feasible,
we have either

(i) an infeasible dual problem (DSDP) if the primal problem (PSDP) is un-
bounded, i.e., OPTP = OPTD =−∞, or

(ii) a feasible dual problem (DSDP) if the primal problem (PSDP) is bounded. In
this case the dual optimal value OPTD is finite, attained and OPTD = OPTP.

Proof. See [Hel00, Theorem 2.2.5] or [dK02, Theorem 2.2].

Corollary 1.77. If both the primal problem (PSDP) and the dual problem (DSDP)
are strictly feasible, then we have a zero optimal duality gap and both optimal values
are attained.

Corollary 1.78. If both the primal problem (PSDP) and the dual problem (DSDP)
are strictly feasible, then the equations

〈Ai |G〉 = bi, G � 0
∑i yiAi +Z = C, Z � 0
〈X |G〉 = 0

 (1.26)

are necessary and sufficient optimality conditions for the (PSDP) and (DSDP), i.e.,
a triple (G,y,Z)∈ S+n ×Rm×S+n is primal and dual optimal if and only if it satisfies
(1.26).

44 1 Selected results from algebra and mathematical optimization

Most of the methods used to solve semidefinite programming problems actually
solve (1.26) iteratively using different first or second order methods.

Semidefinite programming is serving in algebraic geometry mainly as a tool to
extract certificates that a given polynomial belongs to a set under consideration.
These certificates are typically numerical since they are extracted from the (numeri-
cal) optimal solutions of the related SDPs. Often numerical certificates are not suffi-
cient. and one needs to extract a proof for a given statement (e.g., an nc polynomial
is or is not in Θ 2). Therefore in the rest of this section a particular emphasis is given
to the extraction of rational certificates if the input data is rational.

Consider a feasibility SDP in primal form (FSDP) and assume the input data
Ai,bi is rational for i= 1, . . . ,m. If the problem is feasible, does there exist a rational
solution? If so, can one use a combination of numerical and symbolic computation
to produce one?

Example 1.79. Some caution is necessary, as a feasible SDP of the form (FSDP)
needs not admit a rational solution. For a simple concrete example, note that

[
2 x
x 1

]
⊕

x 1 0
1 x 1
0 1 x

� 0 ⇔ x =
√

2.

In fact there are commutative polynomials with rational coefficients that are sums
of squares of polynomials over the reals, but not over the rationals (see [Sch12]).
Adapting an example of Scheiderer, we obtain an nc polynomial with rational coef-
ficients that is cyclically equivalent to a sum of hermitian squares of nc polynomials
over the reals, but not over the rationals:

f = 1+X3 +X4− 3
2

XY − 3
2

Y X−4XY X +2Y 2 +Y 3 +
1
2

XY 3 +
1
2

Y 3X +Y 4.

This is a dehomogenized and symmetrized non-commutative version of the (com-
mutative) polynomial from [Sch12, Theorem 2.1] (setting x0 = 1, x1 = X and
x2 = Y). So f is not cyclically equivalent to a sum of hermitian squares with ra-
tional coefficients. By [Sch12, Theorem 2.1], f |R2 ≥ 0. Together with the fact that f
is cyclically sorted, [KS08a, Proposition 4.2] implies that f is trace-positive. Since
f is of degree 4 in two variables it is a sum of hermitian squares with commutators
[BK12, BCKP13] (with real coefficients).

On the other hand, if (FSDP) admits a feasible positive definite solution, then
it admits a (positive definite) rational feasible solution. More exactly, we have the
following:

Theorem 1.80 (Peyrl & Parrilo [PP08]). If an approximate feasible point G0 for
(FSDP) satisfies

δ := λmin(G0)> ‖(〈Ai,G0〉−bi)i‖=: ε, (1.27)

then a (positive definite) rational feasible point G exists. It can be obtained from G0
in the following two steps (cf. Figure 1.1):

1.13 Semidefinite programming 45

(1) compute a rational approximation G̃ of G0 with τ := ‖G̃−G0‖ satisfying

τ
2 + ε

2 < δ
2;

(2) project G̃ onto the affine subspace L given by the equations 〈Ai,G〉 = bi to
obtain G.

δ

τG̃

G

S+

L

ε

G0

Fig. 1.1 Rounding and projecting to obtain a rational solution

Note that the results in [PP08] are stated for SDPs arising from sum of squares
problems, but their results carry over verbatim to the setting of (the seemingly more)
general SDPs. The rationalization scheme based on this Peyrl-Parrilo technique has
been implemented in NCSOStools ; see Example 3.25 for a demonstration.

Not all is lost, however, if the SDP solver gives a singular feasible point G0
for (FSDP). Suppose that z is a rational nullvector for G0. Let P be a change of
basis matrix containing z as a first column and a (rational) orthogonal basis for the
orthogonal complement {z}⊥ as its remaining columns. Then

PT G0P =

[
0 0
0 Ĝ0

]
,

i.e.,

G0 = P−T
[

0 0
0 Ĝ0

]
P−1

http://ncsostools.fis.unm.si/

46 1 Selected results from algebra and mathematical optimization

for some symmetric Ĝ0. Hence

bi = 〈Ai,G0〉= tr(AiG0) = tr
(

AiP−T
[

0 0
0 Ĝ0

]
P−1

)
= tr

(
P−1AiP−T

[
0 0
0 Ĝ0

])
.

So if

P−1AiP−T =

[
ai cT

i
ci Âi

]
then Âi is a symmetric matrix with rational entries and

bi = tr
([

ai cT
i

ci Âi

][
0 0
0 Ĝ0

])
= tr(ÂiĜ0) = 〈Âi, Ĝ0〉.

We have established a variant of the facial reduction [BW81] which applies
whenever the original SDP is given by rational data and has a singular feasible
point with a rational nullvector:

Theorem 1.81. Let (FSDP), Âi and Ĝ0 be as above. Consider the feasibility SDP

Ĝ � 0
s. t. 〈Âi, Ĝ〉 = bi, i = 1, . . . ,m

(FSDP’)

(i) (FSDP’) is feasible if and only if (FSDP) is feasible.
(ii) (FSDP’) admits a rational solution if and only if (FSDP) does.

The importance of semidefinite programming was spurred by the development of
practically efficient methods to obtain (weakly) optimal solutions. More precisely,
given an ε > 0 we can obtain by interior point methods an ε-optimal solution with
polynomially many iterations, where each iteration takes polynomially many real
number operations, provided that both (PSDP) and (DSDP) have non-empty interi-
ors of feasible sets and we have good initial points. The variables appearing in these
polynomial bounds are the order s of the matrix variable, the number m of linear
constraints in (PSDP) and logε (cf. [WSV00, Ch. 10.4.4]).

Note, however, that the complexity to obtain exact solutions of (PSDP) or
(DSDP) is still a fundamental open question in semidefinite optimization [PK97].
The difficulties arise from the fact that semidefinite programs with rational input
data may have an irrational optimal value or an optimal solution which is doubly
exponential, hence has exponential length in any numerical system coding. Ramana
[Ram97] proved that the decision problem whether there exists a feasible solution
of (PSDP) or (DSDP) - the so-called SDP feasibility problem FSDP - is neither in
NP nor in co-NP unless NP = co-NP, if we consider the Turing machine complexity
models, and FSDP is in NP ∩ co-NP, if we consider the real number model. For
more details about the complexity bounds for linear, semidefinite programming and
other convex quadratic programming problems we refer the reader to [BTN01].

There exist several open source packages which can efficiently find ε-optimal
solutions in practice for most of the problems. If the problem is of medium size

References 47

(i.e., s≤ 1.000 and m≤ 10.000), these packages are based on interior point methods,
while packages for larger semidefinite programs use some variant of the first order
methods (see [Mit15] for a comprehensive list of state of the art SDP solvers and also
[PRW06, MPRW09]). Nevertheless, once s ≥ 3.000 or m ≥ 250.000, the problem
must share some special property otherwise state-of-the art solvers will fail to solve
it for complexity reasons.

References

[Bar02] Alexander Barvinok. A course in convexity, volume 54 of Graduate
Studies in Mathematics. American Mathematical Society, Providence,
RI, 2002.

[BCKP13] Sabine Burgdorf, Kristijan Cafuta, Igor Klep, and Janez Povh. The
tracial moment problem and trace-optimization of polynomials. Math.
Program., 137(1-2):557–578, 2013.

[BK09] Matej Brešar and Igor Klep. Noncommutative polynomials, Lie skew-
ideals and tracial Nullstellensätze. Math. Res. Lett., 16(4):605–626,
2009.

[BK10] Sabine Burgdorf and Igor Klep. Trace-positive polynomials and the
quartic tracial moment problem. Comptes Rendus Mathematique,
348(13–14):721–726, 2010.

[BK12] Sabine Burgdorf and Igor Klep. The truncated tracial moment problem.
J. Operator Theory, 68(1):141–163, 2012.

[Brä11] Petter Brändén. Obstructions to determinantal representability. Adv.
Math., 226(2):1202–1212, 2011.

[BTN01] Aharon Ben-Tal and Arkadi S. Nemirovski. Lectures on modern convex
optimization. MPS/SIAM Series on Optimization. Society for Indus-
trial and Applied Mathematics (SIAM), Philadelphia, PA, 2001.

[BV04] Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cam-
bridge University Press, New York, NY, USA, 2004.

[BW81] Jon M. Borwein and Henry Wolkowicz. Facial reduction for a
cone-convex programming problem. J. Austral. Math. Soc. Ser. A,
30(3):369–380, 1980/81.

[CF96] Raul E. Curto and Lawrence A. Fialkow. Solution of the truncated
complex moment problem for flat data. Mem. Amer. Math. Soc.,
119(568):x+52, 1996.

[CF98] Raul E. Curto and Lawrence A. Fialkow. Flat extensions of positive
moment matrices: recursively generated relations. Mem. Amer. Math.
Soc., 136(648):x+56, 1998.

[CLR95] Man-Duen Choi, Tsit Y. Lam, and Bruce Reznick. Sums of squares
of real polynomials. In K-theory and algebraic geometry: connections
with quadratic forms and division algebras (Santa Barbara,CA, 1992),

48 References

volume 58 of Proc. Sympos. Pure Math., pages 103–126. Amer. Math.
Soc., Providence, RI, 1995.

[Con76] Alain Connes. Classification of injective factors. Cases II1, II∞, IIIλ ,
λ 6= 1. Ann. of Math. (2), 104(1):73–115, 1976.

[dK02] Etienne de Klerk. Aspects of semidefinite programming, volume 65 of
Applied Optimization. Kluwer Academic Publishers, Dordrecht, 2002.

[Hel00] Christoph Helmberg. Semidefinite programming for combinatorial
optimization. Konrad-Zuse-Zentrum für Informationstechnik Berlin,
2000.

[Hel02] J. William Helton. “Positive” noncommutative polynomials are sums
of squares. Ann. of Math. (2), 156(2):675–694, 2002.

[HJ12] Roger A. Horn and Charles R. Johnson. Matrix analysis. Cambridge
university press, 2012.

[HKM12] J. William Helton, Igor Klep, and Scott McCullough. The convex Pos-
itivstellensatz in a free algebra. Adv. Math., 231(1):516–534, 2012.

[HM04] J. William Helton and Scott McCullough. A Positivstellensatz for
non-commutative polynomials. Trans. Amer. Math. Soc., 356(9):3721–
3737, 2004.

[HM12] J. William Helton and Scott McCullough. Every convex free ba-
sic semi-algebraic set has an LMI representation. Ann. of Math. (2),
176(2):979–1013, 2012.

[KS07] Igor Klep and Markus Schweighofer. A nichtnegativstellensatz for
polynomials in noncommuting variables. Israel J. Math., 161:17–27,
2007.

[KS08a] Igor Klep and Markus Schweighofer. Connes’ embedding conjecture
and sums of Hermitian squares. Adv. Math., 217(4):1816–1837, 2008.

[KS08b] Igor Klep and Markus Schweighofer. Sums of Hermitian squares and
the BMV conjecture. J. Stat. Phys, 133(4):739–760, 2008.

[KVV14] Dmitry S. Kaliuzhnyi-Verbovetskyi and Victor Vinnikov. Foundations
of free noncommutative function theory, volume 199. American Math-
ematical Society, 2014.

[Lam01] Tsit Y. Lam. A first course in noncommutative rings, volume 131 of
Graduate Texts in Mathematics. Springer-Verlag, New York, second
edition, 2001.

[McC01] Scott McCullough. Factorization of operator-valued polynomials
in several non-commuting variables. Linear Algebra Appl., 326(1-
3):193–203, 2001.

[Mit15] Hans D. Mittelman. http://plato.asu.edu/sub/pns.html,
2015.

[MKKK10] Kazuo Murota, Yoshihiro Kanno, Masakazu Kojima, and Sadayoshi
Kojima. A numerical algorithm for block-diagonal decomposition of
matrix ∗-algebras with application to semidefinite programming. Jpn.
J. Ind. Appl. Math., 27(1):125–160, 2010.

[MP05] Scott McCullough and Mihai Putinar. Noncommutative sums of
squares. Pacific J. Math., 218(1):167–171, 2005.

http://plato.asu.edu/sub/pns.html

References 49

[MPRW09] Jérôme Malick, Janez Povh, Franz Rendl, and Angelika Wiegele. Reg-
ularization methods for semidefinite programming. SIAM J. Optim.,
20(1):336–356, 2009.

[NT14] Tim Netzer and Andreas Thom. Hyperbolic Polynomials and General-
ized Clifford Algebras. Discrete Comput. Geom., 51:802–814, 2014.

[Par03] Pablo A. Parrilo. Semidefinite programming relaxations for semialge-
braic problems. Math. Program., 96(2, Ser. B):293–320, 2003.

[PK97] Lorant Porkolab and Leonid Khachiyan. On the Complexity of
Semidefinite Programs. J. of Global Optimization, 10(4):351–365,
1997.

[PP08] Helfried Peyrl and Pablo A. Parrilo. Computing sum of squares de-
compositions with rational coefficients. Theoretical Computer Science,
409(2):269–281, 2008.

[Pro76] Claudio Procesi. The invariant theory of n× n matrices. Adv. Math.,
19(3):306–381, 1976.

[PRW06] Janez Povh, Franz Rendl, and Angelika Wiegele. A Boundary Point
Method to solve Semidefinite Programs. Computing, 78:277–286,
2006.

[PS76] Claudio Procesi and Murray Schacher. A non-commutative real Null-
stellensatz and Hilbert’s 17th problem. Ann. Math., 104(3):395–406,
1976.

[PS01] Victoria Powers and Claus Scheiderer. The moment problem for non-
compact semialgebraic sets. Adv. Geom., 1(1):71–88, 2001.

[Put93] Mihai Putinar. Positive polynomials on compact semi-algebraic sets.
Indiana Univ. Math. J., 42(3):969–984, 1993.

[PW98] Victoria Powers and Thorsten Wörmann. An algorithm for sums of
squares of real polynomials. J. Pure Appl. Algebra, 127(1):99–104,
1998.

[Qua15] Ronan Quarez. Trace-positive non-commutative polynomials. Proc.
Amer. Math. Soc., 143(8):3357–3370, 2015.

[Ram97] Motakuri V. Ramana. An exact duality theory for semidefinite pro-
gramming and its complexity implications. Math. Programming, 77(2,
Ser. B):129–162, 1997.

[Row80] Louis H. Rowen. Polynomial identities in ring theory, volume 84 of
Pure and Applied Mathematics. Academic Press Inc., New York, 1980.

[Sch12] Claus Scheiderer. Sums of squares of polynomials with rational coef-
ficients. arXiv:1209.2976, to appear in J. Eur. Math. Soc., 2012.

[Tak03] M. Takesaki. Theory of operator algebras. III, volume 127 of Ency-
clopaedia of Mathematical Sciences. Springer-Verlag, Berlin, 2003.
Operator Algebras and Non-commutative Geometry, 8.

[WSV00] Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe. Hand-
book of Semidefinite Programming. Kluwer, 2000.

Chapter 2
Detecting sums of hermitian squares

2.1 Introduction

The central question of this chapter is how to find out whether a given nc polynomial
is a sum of hermitian squares (SOHS). We rely on Section 1.3, where we explained
basic relations between SOHS polynomials and positive semidefinite Gram matri-
ces. In this chapter we will enclose these results into the Gram matrix method and
refine it with the Newton chip method.

2.2 The Gram matrix method

Recall from Section 1.3 that an nc polynomial f ∈ R〈X〉2d is SOHS if and only
if we can find a positive semidefinite Gram matrix associated to f , i.e., a positive
semidefinite matrix G satisfying W∗

dGWd = f , where Wd is the vector of all words
of degree ≤ d. This is a semidefinite feasibility problem in the matrix variable G.
The constraints 〈Ai |G〉= bi are implied by the fact that for each monomial w∈W2d
we have

∑
u,v∈Wd
u∗v=w

Gu,v = aw, (2.1)

where aw is the coefficient of w in f .
Problems like this can be (in theory) solved exactly using quantifier elimination

[BPR06] as has been suggested in the commutative case by Powers and Wörmann
[PW98]. However, this only works for problems of small size, so a numerical ap-
proach is needed in practice. Thus we turn to numerical methods to solve semidefi-
nite programming problems.

Sums of hermitian squares are symmetric so we consider only f ∈ SymR〈X〉.
Two symmetric polynomials are equal if and only if all of their “symmetrized coef-
ficients” (i.e., aw +aw∗) coincide, hence equations (2.1) can be rewritten as

51

52 2 Detecting sums of hermitian squares

∑
u,v∈Wd
u∗v=w

Gu,v + ∑
u,v∈Wd
v∗u=w∗

Gv,u = aw +aw∗ ∀w ∈W2d , (2.2)

or equivalently,
〈Aw |G〉= aw +aw∗ ∀w ∈W2d , (2.3)

where Aw is the symmetric matrix defined by

(Aw)u,v =

2; if u∗v = w, w∗ = w,
1; if u∗v ∈ {w,w∗}, w∗ 6= w,
0; otherwise.

Note that in this formulation the constraints obtained from w and w∗ are the same so
we keep only one of them. As we are interested in an arbitrary positive semidefinite
G satisfying constraints (2.3), we can choose the objective function freely. However,
in practice one prefers solutions of small rank leading to shorter SOHS decompo-
sitions. Hence we minimize the trace, a commonly used heuristic for matrix rank
minimization (cf. [RFP10]). Therefore our SDP in primal form is as follows:

inf 〈 I |G〉
s. t. 〈Aw |G〉 = aw +aw∗ ∀w ∈W2d

G � 0.
(SOHSSDP)

Summing up, the Gram matrix method can be presented as Algorithm 2.1.

Algorithm 2.1: The Gram matrix method for finding SOHS decompositions
Input: f ∈ SymR〈X〉 with deg f ≤ 2d, f = ∑w∈〈X〉 aww,, where aw ∈ R;

1 G =∅;
2 Construct Wd ;
3 Construct data Aw,b,C corresponding to (SOHSSDP);
4 Solve (SOHSSDP);
5 if (SOHSSDP) is not feasible then
6 f 6∈ Σ 2. Stop;
7 end
8 Take an optimal solution G and compute the Cholesky decomposition

G = R∗R;
9 G = {gi}, where gi denotes the i-th component of RWd ;

Output: G ;

Remark 2.1. The order of G in (SOHSSDP) is the length of Wd , which is σ = nd+1−1
n−1 ,

as shown in Remark 1.12. Since σ = σ(n,d) grows exponentially with the polyno-
mial degree d it easily exceeds the size manageable by the state of the art SDP
solvers, which is widely accepted to be of order 1000. This implies, for example,
that the above algorithm can only handle nc polynomials in two variables if they are
of degree < 10. Therefore it is very important to find an improvement of the Gram
matrix method which will be able to work with much larger nc polynomials. This
will be done in the rest of the chapter.

2.2 The Gram matrix method 53

Example 2.2. Let

f = X2−X10Y 20X11−X11Y 20X10 +X10Y 20X20Y 20X10. (2.4)

The order of a Gram matrix G for f is σ(10) = σ(2,10) = 241−1 and is too big for
today’s SDP solvers. Therefore any implementation of Algorithm 2.1 will get stuck.
On the other hand, it is easy to see that

f = (X−X10Y 20X10)∗(X−X10Y 20X10) ∈ Σ
2.

The polynomial f is sparse and an improved SDP for testing whether (sparse) poly-
nomials are sums of hermitian squares will be given below.

The complexity of solving an SDP is also determined by the number of equations
(2.3), which we denote by m. There are exactly

m = card{w ∈W2d | w∗ = w}+ 1
2

card{w ∈W2d | w∗ 6= w}

such equations in (SOHSSDP). Since Wd contains all words in 〈X〉 of degree ≤ d,
we have m > 1

2 σ(2d) = n2d+1−1
2(n−1) .

For each w ∈W2d there are t different pairs (ui,vi) such that w = u∗i vi, where
t = degw + 1 if degw ≤ d, and t = 2d + 1− degw if degw ≥ d + 1. Note that
t ≤ d +1. Therefore the matrices Ai defining constraints (2.3) have order σ(d) and
every matrix Ai has at most d + 1 nonzero entries if it corresponds to a symmetric
monomial of f , and has at most 2(d +1) nonzero entries otherwise. Hence the ma-
trices Ai are sparse. They are also pairwise orthogonal with respect to the standard
scalar product on matrices 〈X |Y 〉= trXTY , and have disjoint supports, as we now
proceed to show:

Theorem 2.3. Let {Ai | i = 1, . . . ,m} be the matrices constructed in Step 3 of Algo-
rithm 2.1 (i.e., matrices satisfying (2.3)). If (Ai)u,v 6= 0, then (A j)u,v = 0 for all j 6= i.
In particular, 〈Ai |A j 〉= 0 for i 6= j.

Proof. The equations in the SDP underlying the SOHS decomposition represent
the constraints that the monomials in W2d must have coefficients prescribed by the
polynomial f . Let us fix i 6= j. The matrices Ai and A j correspond to some mono-
mials p∗1q1 and p∗2q2 (pi,qi ∈Wd), respectively, and p∗1q1 6= p∗2q2. If Ai and A j both
have a nonzero entry at position (u,v), then p∗1q1 = u∗v = p∗2q2, a contradiction.

Remark 2.4. Sparsity and orthogonality of the constraints imply that the state of the
art SDP solvers can handle about 100 000 such constraints (see e.g. [MPRW09]),
if the order of the matrix variable is about 1000. The boundary point method intro-
duced in [PRW06] and analyzed in [MPRW09] has turned out to perform best for
semidefinite programs of this type. It is able to use the orthogonality of the matri-
ces Ai (though not the disjointness of their supports). In the computationally most
expensive steps - solving a linear system - the system matrix becomes diagonal, so
solving the system amounts to dividing by the corresponding diagonal entries.

54 2 Detecting sums of hermitian squares

Since Wd contains all words in 〈X〉 of degree ≤ d, we have e.g., for n = 2, d = 10
that m = σ(20) = σ(2,20) = 2097150 and this is clearly out of reach for all current
SDP solvers. Nevertheless, we show in the sequel that one can replace the vector Wd
in Step 2 of Algorithm 2.1 by a vector W which is usually much smaller and has at
most kd words, where k is the number of symmetric monomials in f and 2d = deg f .
Hence the order of the matrix variable G and the number of linear constraints m end
up being much smaller in general.

2.3 Newton chip method

We present a modification of (Step 1 of) the Gram matrix method (Algorithm 2.1)
by implementing the appropriate non-commutative analogue of the classical Newton
polytope method [Rez78], which we call the Newton chip method and present it as
Algorithm 2.2.

Definition 2.5. Let us define the right chip function rc : 〈X〉×N0→ 〈X〉 by

rc(w1 · · ·wn, i) :=

wn−i+1wn−i+2 · · ·wn if 1≤ i≤ n;
w1 · · ·wn if i > n;
1 if i = 0.

Example 2.6. Given the word w = X1X2X1X2
2 X1 ∈ 〈X〉 we have rc(w,4) = X1X2

2 X1,
rc(w,6) = w and rc(w,0) = 1.

We introduce the Newton chip method, presented as Algorithm 2.2. It substantially
reduces the word vector needed in the Gram matrix method.

Theorem 2.7. Suppose f ∈ SymR〈X〉. Then f ∈ Σ 2 if and only if there exists a
positive semidefinite matrix G satisfying

f = W∗GW,

where W is the output given by the Newton chip method (Algorithm 2.2).

Proof. Suppose f ∈ Σ 2. In every sum of hermitian squares decomposition

f = ∑
i

g∗i gi,

only words from D (constructed in Step 4) are used, i.e., gi ∈ spanD for every i.
This follows from the fact that the lowest and highest degree terms cannot cancel
(cf. proof of Proposition 1.16). Let W :=

⋃
i Wgi be the union of the supports of the

gi. We shall prove that W ⊆W . For this, let us introduce a partial ordering on 〈X〉:

w1 � w2 ⇔ ∃ i ∈ N0 : rc(w2, i) = w1.

2.3 Newton chip method 55

Note: w1 � w2 if and only if there is a v ∈ 〈X〉 with w2 = vw1.
CLAIM: For every w ∈W there exists u ∈ 〈X〉: w� u� u∗u ∈W f .
Proof: Clearly, w∗w is a word that appears in the representation of g∗i gi which one
naturally gets by multiplying out without simplifying, for some i. If w∗w 6∈ W f ,
then there are w1,w2 ∈ W \ {w} with w∗1w2 = w∗w (appearing with a negative co-
efficient so as to cancel the w∗w term). Then w � w1 or w � w2, without loss of
generality, w � w1. Continuing the same line of reasoning, but starting with w∗1w1,
we eventually arrive at w` ∈ W with w∗`w` ∈ W f and w � w1 � ·· · � w`. Thus
w� w` � w∗`w` ∈W f , concluding the proof of the claim.

The theorem follows now. Since u∗u ∈ W f and w is a right chip of u we have
w ∈W.

Algorithm 2.2: The Newton chip method
Input: f ∈ SymR〈X〉 with deg f ≤ 2d, f = ∑w∈〈X〉 aww,, where aw ∈ R;

1 Define the support of f as W f := {w ∈ 〈X〉 | aw 6= 0};
2 W :=∅;
3 Let mi := mindeg i f

2 , Mi := deg i f
2 , m := mindeg f

2 , M := deg f
2 ;

4 The set of admissible words is defined as

D := {w ∈ 〈X〉 | mi ≤ deg iw≤Mi for all i, m≤ degw≤M};

for every w∗w ∈W f do
5 for 0≤ i≤ degw do
6 if rc(w, i) ∈D then
7 W :=W ∪{rc(w, i)};
8 end
9 end

10 end
11 Sort W in a lexicographic order and transform it into the vector W;

Output: W;

Example 2.8 (Example 2.2 continued). The polynomial f from Example 2.2 has two
hermitian squares: X2 and X10Y 20X20Y 20X10. The first hermitian square contributes
via the Newton chip method only one right chip: X ; while the second hermitian
square X10Y 20X20Y 20X10 contributes to W the following words: X , X2, . . . ,X10 as
well as Y X10,Y 2X10, . . . ,Y 20X10,XY 20X10, . . . ,X10Y 20X10.

Applying the Newton chip method to f therefore yields W which is a vector in
the lexicographic order and is equal to

W =
[

X X2 · · · X10 Y X10 · · · Y 20X10 XY 20X10 · · · X10Y 20X10
]T

of length 40. Problems of this size are easily handled by today’s SDP solvers. Nev-
ertheless we provide a further strengthening of our Newton chip method reducing
the number of words needed in this example to 2 (see Section 2.4).

56 2 Detecting sums of hermitian squares

2.4 Augmented Newton chip method

The following simple observation is often crucial to reduce the size of W returned
by the Newton chip method.

Lemma 2.9. Suppose W is the vector of words returned by the Newton chip method.
If there exists a word u ∈W such that the constraint in (SOHSSDP) corresponding
to u∗u can be written as

〈Au∗u |G〉= 0

and Au∗u is a diagonal matrix (i.e., (Au∗u)u,u = 2 and Au∗u is 0 elsewhere), then
we can eliminate u from W and likewise delete this equation from the semidefinite
program.

Proof. Indeed, such a constraint implies that Gu,u = 0 for the given u ∈W, hence
the u-th row and column of G must be zero, since G is positive semidefinite. So we
can decrease the order of (SOHSSDP) by deleting the u-th row and column from G
and by deleting this constraint.

Lemma 2.9 applies if and only if there exists a constraint 〈Aw |G〉 = 0, where
w = u∗u for some u ∈W and w 6= v∗z for all v,z ∈W, v 6= z. Therefore we augment
the Newton chip method 2.2 by new steps, as shown in Algorithm 2.3.

Algorithm 2.3: The Augmented Newton chip method
Input: f ∈ SymR〈X〉 with deg f ≤ 2d, f = ∑w∈〈X〉 aww,, where aw ∈ R;

1 Compute W by the Newton chip method (Algorithm 2.2);
2 while exists u ∈W such that au∗u = 0 and u∗u 6= v∗z for every pair v,z ∈W,

v 6= z do
3 delete u from W;
4 end

Output: W;

Note that in Step 2 there might exist some word u ∈W which does not satisfy
the condition initially but after deleting another u′ from W it does. We demonstrate
Algorithm 2.3 in the following example.

Example 2.10 (Example 2.2 continued). By applying the Augmented Newton chip
method to f from (2.4) we reduce the vector W significantly. Note that after Step 1,
W also contains the words X8, X9, X10. Although X18 does not appear in f , we can-
not delete X9 from W immediately since X18 = (X9)∗X9 = (X8)∗X10. But we can
delete X10 since X20 does not appear in f and (X10)∗X10 is the unique decomposi-
tion of X20 inside W. After deleting X10 from W we realize that (X9)∗X9 becomes
the unique decomposition of X18, hence we can eliminate X9 too. Eventually the
augmented Newton chip method returns

W =
[

X X10Y 20X10
]T

,

which is exactly the minimum vector needed for the SOHS decomposition of f .

2.5 Implementation 57

2.5 Implementation

2.5.1 On the Gram matrix method

The Gram matrix method (Algorithm 2.1) consists of two main parts: (i) construct-
ing the matrices corresponding to (SOHSSDP) - Step 3, and (ii) solving the con-
structed SDP in Step 4. Step 3 is straightforward, running the Augmented Newton
chip method (Algorithm 2.3) gives the desired vector of relevant words. There are
no numerical problems, no convergence issues, Algorithm 2.3 always terminates
with the desired vector W.

The second main part is more subtle. Solving an instance of SDP in practice al-
ways involves algorithms that are highly numerical: algorithms to compute spectral
decompositions, solutions of systems of linear equations, inverses of matrices, etc.
Methods for solving SDP, especially interior point methods [dK02, Ter96, WSV00],
but also some first order methods [MPRW09, PRW06], typically assume strictly
feasible solutions on the primal and the dual side, which imply the strong duality
property and the attainability of optimums on both sides. Moreover, this assumption
also guarantees that most of the methods will converge to a primal-dual ε-optimal
solution. See also Section 1.13.

As the following example demonstrates, the Slater condition is not necessarily
satisfied on the primal side in our class of (SOHSSDP) problems.

Example 2.11. Let f = (XY + X2)∗(XY + X2). It is homogeneous, and the Aug-
mented Newton chip method gives

W =

[
X2

XY

]
.

There exists a unique symmetric Gram matrix

G =

[
1 1
1 1

]
for f such that f = W∗GW. Clearly G, a rank 1 matrix, is the only feasible solution
of (SOHSSDP), hence the corresponding SDP has no strictly feasible solution on the
primal side.

If we take the objective function in our primal SDP (SOHSSDP) to be equal to
〈 I |G〉, then the pair y = 0, Z = I is always strictly feasible for the dual problem of
(SOHSSDP) and thus we do have the strong duality property.

Hence, when the given nc polynomial is in Σ 2, the corresponding semidefinite
program (SOHSSDP) is feasible, and the optimal value is attained. If there is no
strictly feasible solution, then numerical difficulties might arise but state-of-the-art
SDP solvers such as SeDuMi [Stu99], SDPT3 [TTT99], SDPA [YFK03] or MOSEK
[ApS15] are able to overcome them in most of the instances. When the given nc
polynomial is not in Σ 2, then the semidefinite problem (SOHSSDP) is infeasible and

58 2 Detecting sums of hermitian squares

this might cause numerical problems as well. However, state-of-the-art SDP solvers
are generally robust and can reliably detect infeasibility for most practical problems.
For more details see [dKRT98, PT09].

2.5.2 Software package NCSOStools

The software package NCSOStools [CKP11] was developed to help researchers
working in the area of non-commutative polynomials. NCSOStools [CKP11] is
an open source Matlab toolbox for solving SOHS related problems using semidef-
inite programming. It also implements symbolic computation with non-commuting
variables in Matlab.

There is a small overlap in features with Helton’s NCAlgebra package for
Mathematica [HMdOS15]. However, NCSOStools [CKP11] performs basic ma-
nipulations with non-commuting variables and is mainly oriented to detect sev-
eral variants of constrained and unconstrained positivity of nc polynomials, while
NCAlgebra is a fully-fledged add-on for symbolic computation with polynomials,
matrices and rational functions in non-commuting variables.

When we started writing NCSOStools we decided to use Matlab as a main
framework since we solve the underlying SDP instances by existing open source
solvers like SeDuMi [Stu99], SDPT3 [TTT99] or SDPA [YFK03] and these solvers
can be very easily run within Matlab.

Readers interested in solving sums of squares problems for commuting polyno-
mials are referred to one of the many great existing packages, such as SOSTOOLS
[PPSP05], SparsePOP [WKK+09], GloptiPoly [HLL09], or YALMIP [Löf04].

Detecting sums of hermitian squares by the Gram matrix method and using the
(Augmented) Newton chip method can be done within NCSOStools by calling
NCsos.

Example 2.12 (Example 2.11 continued). We declare the polynomial f that we
started considering in Example 2.11 within NCSOStools by

NCvars x y
>> f=(x*y+xˆ2)’*(x*y+xˆ2)

By calling

>> [IsSohs,Gr,W,sohs,g,SDP_data,L] = NCsos(f)

we obtain that f is SOHS (IsSohs=1), the vector given by the Augmented Newton
chip methods (W) and the corresponding Gram matrix Gr:

W =
’x*x’
’x*y’

Gr =
1.0000 1.0000
1.0000 1.0000

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/

References 59

Likewise we obtain the SOHS decomposition of f

sohs =
xˆ2+x*y

2.2e-07*x*y

which means that the SOHS decomposition for f is

f = (X2 +XY)∗(X2 +XY)+(2.2 ·10−7XY)∗(2.2 ·10−7XY).

This is ε correct for ε = 10−13, i.e., if we cut off all monomials with coeffi-
cients less than 10−13 we obtain f . We can control precision using the parame-
ter pars.precision. All monomials in sohs having coefficient smaller than
pars.precision are ignored. Therefore by running

>> pars.precision=1e-6;
>> [IsSohs,Gr,W,sohs,g,SDP_data,L] = NCsos(f,pars);

we obtain the exact value for a SOHS decomposition of f , i.e., f is exactly a sum of
hermitian squares of elements from sohs.

The data describing the semidefinite program (SOHSSDP) is given in SDP data
while the optimal matrix for the dual problem to (SOHSSDP) is given in L. In g
we return sum of squares of entries from sohs with monomials having coefficient
larger than 10−8 which is an internal parameter.

References

[ApS15] MOSEK ApS. The MOSEK optimization toolbox for MATLAB man-
ual. Version 7.1 (Revision 28), 2015.

[BPR06] Saugata Basu, Richard Pollack, and Marie-Francoise Roy. Algorithms
in real algebraic geometry, volume 10 of Algorithms and Computa-
tion in Mathematics. Springer-Verlag, Berlin, second edition, 2006.

[CKP11] Kristijan Cafuta, Igor Klep, and Janez Povh. NCSOStools: a computer
algebra system for symbolic and numerical computation with non-
commutative polynomials. Optim. Methods. Softw., 26(3):363–380,
2011. Available from http://ncsostools.fis.unm.si/.

[dK02] Etienne de Klerk. Aspects of semidefinite programming, volume 65
of Applied Optimization. Kluwer Academic Publishers, Dordrecht,
2002.

[dKRT98] Etienne de Klerk, Cornelis Roos, and Tamás Terlaky. Infeasible-
start semidefinite programming algorithms via self-dual embeddings.
In Topics in semidefinite and interior-point methods (Toronto, ON,
1996), volume 18 of Fields Inst. Commun., pages 215–236. Amer.
Math. Soc., Providence, RI, 1998.

http://ncsostools.fis.unm.si/

60 References

[HLL09] Didier Henrion, Jean B. Lasserre, and Johan Löfberg. GloptiPoly 3:
moments, optimization and semidefinite programming. Optim. Meth-
ods Softw., 24(4-5):761–779, 2009. Available from http://www.
laas.fr/˜henrion/software/gloptipoly3/.

[HMdOS15] J. William Helton, Robert L. Miller, Maurcio C. de Oliveira, and Mark
Stankus. NCAlgebra: A Mathematica package for doing non com-
muting algebra. Available from http://www.math.ucsd.edu/

˜ncalg/, September 2015.
[Löf04] Johan Löfberg. YALMIP: A Toolbox for Modeling and Optimiza-

tion in MATLAB. In Proceedings of the CACSD Conference, Taipei,
Taiwan, 2004. Available from http://control.ee.ethz.ch/

˜joloef/wiki/pmwiki.php.
[MPRW09] Jérôme Malick, Janez Povh, Franz Rendl, and Angelika Wiegele. Reg-

ularization methods for semidefinite programming. SIAM J. Optim.,
20(1):336–356, 2009.

[PPSP05] Stephen Prajna, Antonis Papachristodoulou, Pete Seiler, and Pablo A.
Parrilo. SOSTOOLS and its control applications. In Positive polyno-
mials in control, volume 312 of Lecture Notes in Control and Inform.
Sci., pages 273–292. Springer, Berlin, 2005.

[PRW06] Janez Povh, Franz Rendl, and Angelika Wiegele. A Boundary Point
Method to solve Semidefinite Programs. Computing, 78:277–286,
2006.

[PT09] Imre Pólik and Tamás Terlaky. New stopping criteria for detecting
infeasibility in conic optimization. Optimization Letters, 3(2):187–
198, 2009.

[PW98] Victoria Powers and Thorsten Wörmann. An algorithm for sums of
squares of real polynomials. J. Pure Appl. Algebra, 127(1):99–104,
1998.

[Rez78] Bruce Reznick. Extremal PSD forms with few terms. Duke Math. J.,
45(2):363–374, 1978.

[RFP10] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed
minimum-rank solutions of linear matrix equations via nuclear norm
minimization. SIAM Rev., 52(3):471–501, 2010.

[Stu99] Jos F. Sturm. Using SeDuMi 1.02, a MATLAB toolbox for optimiza-
tion over symmetric cones. Optim. Methods Softw., 11/12(1-4):625–
653, 1999. Available from http://sedumi.ie.lehigh.edu/.

[Ter96] Tamás Terlaky, editor. Interior point methods of mathematical pro-
gramming, volume 5 of Applied Optimization. Kluwer Academic
Publishers, Dordrecht, 1996.

[TTT99] Kim C. Toh, Michael J. Todd, and Reha Tütüncü. SDPT3–a MATLAB
software package for semidefinite programming, version 1.3. Optim.
Methods Softw., 11/12(1-4):545–581, 1999. Available from http:
//www.math.nus.edu.sg/˜mattohkc/sdpt3.html.

[WKK+09] Hayato Waki, Sunyoung Kim, Masakazu Kojima, Masakazu Mu-
ramatsu, and Hiroshi Sugimoto. Algorithm 883: sparsePOP—a

http://www.laas.fr/~henrion/software/gloptipoly3/
http://www.laas.fr/~henrion/software/gloptipoly3/
http://www.math.ucsd.edu/~ncalg/
http://www.math.ucsd.edu/~ncalg/
http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php
http://control.ee.ethz.ch/~joloef/wiki/pmwiki.php
http://sedumi.ie.lehigh.edu/
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html
http://www.math.nus.edu.sg/~mattohkc/sdpt3.html

References 61

sparse semidefinite programming relaxation of polynomial optimiza-
tion problems. ACM Trans. Math. Software, 35(2):Art. 15, 13, 2009.

[WSV00] Henry Wolkowicz, Romesh Saigal, and Lieven Vandenberghe. Hand-
book of Semidefinite Programming. Kluwer, 2000.

[YFK03] Makoto Yamashita, Katsuki Fujisawa, and Masakazu Kojima. Imple-
mentation and evaluation of SDPA 6.0 (semidefinite programming al-
gorithm 6.0). Optim. Methods Softw., 18(4):491–505, 2003. Available
from http://sdpa.sourceforge.net/.

http://sdpa.sourceforge.net/

Chapter 3
Cyclic equivalence to sums of hermitian squares

3.1 Introduction

When we move focus from positive semidefinite non-commutative polynomials to
trace-positive non-commutative polynomials we naturally meet cyclic equivalence
to hermitian squares, see Definitions 1.57 and 1.60. In this chapter we will con-
sider the question whether an nc polynomial is cyclically equivalent to SOHS, i.e.,
whether it is a member of the cone Θ 2, which is a sufficient condition for trace-
positivity. A special attention will be given to algorithmic aspects of detecting mem-
bers in Θ 2. We present a tracial version of the Gram matrix method based on the
tracial version of the Newton chip method which by using semidefinite program-
ming efficiently answers the question if a given nc polynomial is or is not cyclically
equivalent to a sum of hermitian squares.

Example 3.1. Consider f = X2Y 2 +XY 2X +XY XY +Y X2Y +Y XY X +Y 2X2. This
nc polynomial belongs to Θ 2 as can be seen from

f = (XY XY +Y XY X +XY 2X +Y X2Y)+2XY 2X +[Y 2X ,X]+ [X ,XY 2]

= (XY +Y X)∗(XY +Y X)+2(Y X)∗(Y X)+ [Y 2X ,X]+ [X ,XY 2]
cyc∼ (XY +Y X)∗(XY +Y X)+2(Y X)∗(Y X).

In particular, tr f (A,B)≥ 0 for all symmetric matrices A,B but in general f (A,B) is
not positive semidefinite.

Testing whether a given f ∈ R〈X〉 is an element of Θ 2 can be done efficiently
by using semidefinite programming as first observed in [KS08, Section 3], see also
[BCKP13]. The method behind this is a variant of the Gram matrix method and
arises as a natural extension of the results for sums of hermitian squares (cf. Sec-
tion 2.2) or for polynomials in commuting variables [CLR95, Section 2]; see also
[Par03]. In this chapter we present the improved tracial Gram matrix method which
is based on a tracial version of the classical Newton polytope used to reduce the size
of the underlying semidefinite programming problem. The concrete formulation is

63

64 3 Cyclic equivalence to sums of hermitian squares

a bit technical but the core idea is straightforward and goes as follows. Define the
Newton polytope of an nc polynomial f as the Newton polytope of an appropriate
interpretation of f as a polynomial in commuting variables. Now apply the Newton
polytope method and then lift the obtained set of monomials in commuting variables
to a set of monomials in non-commuting variables.

3.2 The cyclic degree

Our viewpoint focuses on the dual description of the tracial version of the Newton
polytope, described by the so-called cyclic-α-degree. This viewpoint clarifies the
chosen interpretation of an nc polynomial as a polynomial in commuting variables
which is used in the algorithm.

We will need to consider the monoid [x] in commuting variables x = (x1, . . . ,xn)
and its semigroup algebra R[x] of polynomials. Its monomials are written in the form
xd = xd1

1 · · ·xdn
n for d = (d1, . . . ,dn) ∈ Nn

0. There is a natural mapping 〈X〉 → [x]. For
a given word w ∈ 〈X〉 its image under this mapping is of the form xdw , where dw,i
denotes how many times Xi appears in w. It is called the commutative collapse of w.
Similarly, we introduce the commutative collapse of a set of words V ⊆ R〈X〉. For
f = ∑w aww ∈ R〈X〉 we define the set

cc(f) := {xdw ∈ [x] | aw 6= 0}.

We generalize the degree of an nc polynomial as follows.

Definition 3.2. Given α = (α1, . . . ,αn)∈Rn we define the α-degree deg α of a word
w ∈ 〈X〉 as the standard scalar product between α and the exponent of the commu-
tative collapse xdw of w, i.e.,

deg α w :=
n

∑
i=1

αidw,i = 〈α |dw 〉.

We also set deg α 0 :=−∞.

Note that for all α ∈ Rn, we have

u
cyc∼ v⇒ deg α u = deg α v and deg α(uv) = deg α u+deg α v.

This notion extends naturally to the α-degree of arbitrary nc polynomial f =

∑w aww ∈ R〈X〉:
deg α f := max

aw 6=0
deg α w.

Remark 3.3. As special cases, note that deg f corresponds to the α with all ones and
deg i f (the degree in variable Xi) corresponds to the standard unit vectors ei.

3.3 The tracial Newton polytope 65

Two cyclically equivalent nc polynomials in general do not have the same α-
degree. We therefore modify the definition to obtain the more robust cyclic-α-degree
cdeg α :

cdeg α f := min
g

cyc∼ f
deg α g

cdeg f := cdeg (1,...,1) f .

For instance, for f = X2
1 X2

2 X2
1 +X4

2 X4
3 −X4

3 X4
2 +X1X2−X2X1

cyc∼ X4
1 X2

2 we have

deg (1,1,3) f = 16 , cdeg (1,1,3) f = 6.

Definition 3.4. Let w ∈R〈X〉. The canonical representative [w] of w is the first with
respect to the lexicographic order among words cyclically equivalent to w. For an
nc polynomial f = ∑w aww ∈ SymR〈X〉 we define the canonical representative [f]
of f as follows:

[f] := ∑
w∈R〈X〉

aw[w] ∈ R〈X〉.

That is, [f] contains only canonical representatives of words from f , and the coeffi-
cient of [w] in [f] is

∑
u

cyc∼w

au.

For example, if f = 2Y 2X2−XY 2X +XY −Y X , then [f] = X2Y 2.

The next proposition shows that the cyclic-α-degree is compatible with the
equivalence relation

cyc∼ and equals the degree of the canonical representative.

Proposition 3.5.

(i) For any polynomials f ,g ∈ R〈X〉, we have f
cyc∼ g if and only if [f] = [g].

(ii) For all α ∈ Rn and f ∈ R〈X〉 we have cdeg α f = deg α [f].

Proof. Property (i) is obvious by Remark 1.51, part (b). Let us consider (ii). Since
f

cyc∼ [f], cdeg α f ≤ deg α [f]. Suppose there exists g
cyc∼ f with deg α0

g < deg α0
[f]

for some α0 ∈Rn. There is a word [w] with deg α0
[w] = deg α0

[f], and the coefficient
of [w] in [f] is non-zero. But by the first part of the proposition the same is true for
g, hence deg α0

g≥ deg α0
[f], which is a contradiction.

3.3 The tracial Newton polytope

Given a polynomial f ∈ R[x] (in commuting variables) the Newton polytope N(f)
consists of all integer lattice points in the convex hull of the degrees d = (d1, . . . ,dn)
of monomials appearing in f , considered as vectors in Rn (see e.g. [Rez78] for
details). That is, for f = ∑d adxd ∈ R[x],

66 3 Cyclic equivalence to sums of hermitian squares

N(f) := Zn∩ conv
(
{d ∈ Zn | ad 6= 0}

)
.

We will also refer to the set 1
2 N(f) := {d ∈ Zn | 2d ∈ N(f)}. Alternatively, by

dualization, one can describe the Newton polytope via the α-degree, namely

N(f) = Zn∩ conv{d ∈ Zn | deg α xd ≤ deg α f for all α ∈ Rn}.

Similarly, N(S) and 1
2 N(S) are defined, where S is a set of monomials in commuting

variables. By dualization one immediately derives the following lemma.

Lemma 3.6. Let f ∈R〈X〉. A word w ∈ 〈X〉 with commutative collapse xdw satisfies
deg α w≤ cdeg α f for all α ∈ Rn if and only if dw is contained in the convex hull of
the vectors {dv | v ∈ cc([f])}.

In other words, the tracial Newton polytope of an nc polynomial f ∈ R〈X〉 is
given by the classical Newton polytope for the commutative collapse of the canon-
ical representative [f] of f . Hence a word w ∈ 〈X〉 should be included in the sum
of hermitian squares and commutators factorization for a given non-commutative
polynomial f if and only if the exponent dw of its commutative collapse is con-
tained in one half times the Newton polytope of the commutative collapse of [f]. In
fact, this will be shown in Theorem 3.10, where we present the augmented tracial
Gram matrix method.

Example 3.7. Let f = 1−XY 3 +Y 3X +2Y 2−4X5. Then [f] = 1+2Y 2−4X5,

cc(f) = {1,xy3,y2,x5} ⊆ [x,y] and cc([f]) = {1,y2,x5} ⊆ [x,y],

where [x,y] is the monoid generated by commuting variables x,y. Furthermore we
have

N(cc([f])) = Z2∩ conv
(
{(0,0), (0,2), (5,0)}

)
=
{
(0,0), (1,0), (2,0), (3,0), (4,0), (5,0), (0,1), (1,1), (2,1), (0,2)

}
.

We note that by taking the canonical representative [f] instead of f itself we get
a unique Newton polytope for f which is also the smallest Newton polytope among
all Newton polytopes of possible interpretations of f in R[x].

3.4 The tracial Gram matrix method

In this section we present the improved tracial Gram matrix method based on the
tracial Newton polytope. That is, to construct a tracial Gram matrix for an nc poly-
nomial f ∈ R〈X〉 we will only consider words w ∈ 〈X〉 whose exponent dw of its
commutative collapse is contained in one half times the tracial Newton polytope
of f . This will be expressed by the cyclic-α-degree using the following corollary,
which is an immediate consequence of Proposition 3.5 (ii) and Lemma 3.6.

3.4 The tracial Gram matrix method 67

x

y

0 1 2 3 4 5

1

2

Fig. 3.1 The Newton polytope of f = 1−XY 3 +Y 3X +2Y 2−4X5

Corollary 3.8. Let f ∈ R〈X〉 be an nc polynomial. Then

cc(W) =
{

xd | d ∈ 1
2

N(cc([f]))
}

(3.1)

for the vector W consisting of all words w ∈ 〈X〉 satisfying 2deg α w ≤ cdeg α f for
all α ∈ Rn.

Example 3.9. For f = 1− XY 3 +Y 3X + 2Y 2 − 4X5 from Example 3.7 we have
1
2 N(cc([f])) =

{
(0,0), (0,1), (1,0), (2,0)

}
. One easily verifies W =

[
1 Y X X2

]T
and hence (3.1) holds.

Theorem 3.10. Suppose f ∈R〈X〉. Then f ∈Θ 2 if and only if there exists a positive
semidefinite matrix G such that

f
cyc∼ W∗GW, (3.2)

where W is a vector consisting of all words w ∈ 〈X〉 satisfying

2deg α w≤ cdeg α f for all α ∈ Rn. (3.3)

Furthermore, given such a positive semidefinite matrix G of rank r, one can con-
struct nc polynomials g1, . . . ,gr ∈ R〈X〉 with f

cyc∼ ∑
r
i=1 g∗i gi.

Corollary 3.11. If f ∈ SymR〈X〉 with cdeg f = 2d, then f ∈Θ 2 ⇐⇒ f ∈Θ 2
2d .

Proof. Indeed, if f ∈Θ 2 then f
cyc∼ W∗GW with W and G from the theorem above.

Suppose w ∈W. Then w satisfies (3.3), hence for α = (1, . . . ,1) we have

2deg α w = 2degw≤ cdeg α f = 2d,

68 3 Cyclic equivalence to sums of hermitian squares

i.e., w ∈Wd . Therefore f ∈Θ 2
2d . The converse is obvious.

For the proof of Theorem 3.10 we need one last ingredient, namely that the
cyclic-α-degree of a sum of hermitian squares is equal to its α-degree.

Lemma 3.12. If f
cyc∼ g = ∑i g∗i gi, then cdeg α f = deg α g.

Proof. If g = 0 then the lemma is true for trivial reasons. Otherwise, by defini-
tion, cdeg α f ≤ deg α g for all α ∈ Rn. Suppose there exists a vector α0 ∈ Rn with

cdeg α0
f < deg α0

g. For [f]
cyc∼ f we have cdeg α0

f = deg α0
[f]< deg α0

g =: 2∆ 6= 0.
Let pi be the homogeneous part of gi with α0-degree equal to ∆ and ri = gi− pi.
Then deg α0

ri < ∆ and

[f]
cyc∼ ∑g∗i gi = ∑(pi + ri)

∗(pi + ri)

= ∑ p∗i pi +∑ p∗i ri +∑r∗i pi +∑r∗i ri. (3.4)

Since each word w in p∗i ri, r∗i pi and r∗i ri has deg α0
w < 2∆ , none of these can be

cyclically equivalent to a nontrivial word in p∗i pi, where each nontrivial word in
p∗i pi has α0-degree equal to 2∆ 6= 0 (note that for each i, either p∗i pi 6

cyc∼ 0 or pi = 0
due to Lemma 1.55). Similarly, by assumption there is no word in [f] with α0-degree
equal to 2∆ . Thus

0
cyc∼ ∑ p∗i pi, [f]

cyc∼ ∑ p∗i ri +∑r∗i pi +∑r∗i ri.

However, Lemma 1.55 implies that pi = 0 for all i contradicting that deg α0
g = 2∆ .

Proof (of Theorem 3.10). If f
cyc∼ g = ∑i g∗i gi ∈ Σ 2, then deg α g = cdeg α f for all

α ∈ Rn, as follows from Lemma 3.12. Therefore,

2deg α gi ≤ deg α g = cdeg α f

for all i and for all α ∈ Rn, hence gi contains only words satisfying (3.3). Write
gi = GT

i W, where GT
i is the (row) vector consisting of the coefficients of gi. Then

g∗i gi = W∗GiGT
i W and, by setting G := ∑i GiGT

i , property (3.2) clearly holds.
The inverse of this claim is obvious. Given a positive semidefinite G ∈ RN×N of

rank r satisfying (3.2), write G = ∑
r
i=1 GiGT

i for Gi ∈ RN×1. Defining gi := GT
i W

yields f
cyc∼ ∑

r
i=1 g∗i gi.

A matrix G satisfying (3.2) is called a tracial Gram matrix for f , which motivates
the name of the method. For an nc polynomial f ∈R〈X〉 the tracial Gram matrix is in
general not unique, hence determining whether f ∈Θ 2 amounts to finding a positive
semidefinite tracial Gram matrix from the affine set of all tracial Gram matrices for
f . Problems like this can in theory be solved exactly using quantifier elimination,
but this only works for problems of small size. Therefore we follow as in the (usual)
Gram matrix method a numerical approach in practice. Thus we turn to semidefinite
programming, which has become a standard tool in mathematical optimization in

3.4 The tracial Gram matrix method 69

the last two decades. The reader not familiar with this topic is referred to Section
1.13 and to references therein.

Following Theorem 3.10 we must determine whether there exists a positive
semidefinite matrix G such that f

cyc∼ W∗GW. This is a semidefinite feasibility prob-
lem in the matrix variable G, where the constraints 〈Ai |G〉 = bi are essentially
equations (1.16).

Example 3.13. Let

f = 2XY 2XY X +4XY X2Y X +XY 4X +2Y XY 2X2

= (Y 2X +2XY X)∗(Y 2X +2XY X)−2XY XY 2X +2Y XY 2X2

cyc∼ (Y 2X +2XY X)∗(Y 2X +2XY X).

If we take W =
[
XY X Y 2X

]T , then a tracial (positive semidefinite) Gram matrix G
for f is obtained as a solution to the following semidefinite program (SDP):

inf 〈C |G〉
s. t.

XY X2Y X : G1,1 = 4
XY XY 2X : G1,2 = 2
XY 2XY X : G2,1 = 2

XY 4X : G2,2 = 1
G � 0.

Remark 3.14. The matrix C in Example 3.13 is arbitrary. One can use C = I, a com-
monly used heuristic for matrix rank minimization [RFP10]. Often, however, a so-
lution of high-rank is desired (this is the case when we want to extract rational
certificates, a topic discussed in Section 1.13 and in Examples 3.25 and 3.26 below,
see also [CKP14]). Then C = 0 is used, since under a strict feasibility assumption
the interior point methods yield solutions in the relative interior of the optimal face,
which is in our case the whole feasibility set. If strict complementary is additionally
provided, the interior point methods lead to the analytic center of the feasibility set
[HdKR02]. Even though these assumptions do not always hold for the instances of
SDPs we construct, in our experiments the choice C = 0 in the objective function
almost always gave a solution of higher rank than the choice C = I.

Remark 3.15. As we restrict our attention to nc polynomials which are cyclically
equivalent to symmetric nc polynomials (the others are clearly not in Θ 2), we may
always merge the equations corresponding to a particular word and its involution,
e.g. in Example 3.13 we can replace the second and the third equation with a single
constraint G1,2 +G2,1 = 4.

We formalize the lesson from Remark 3.15 as follows:

Lemma 3.16. If f = ∑w aww ∈Θ 2, then for every v ∈ 〈X〉

70 3 Cyclic equivalence to sums of hermitian squares

∑
w

cyc∼ v

aw = ∑
w

cyc∼ v∗

aw. (3.5)

Corollary 3.17. Given f ∈ R〈X〉 we have:

(i) If f does not satisfy (3.5), then f 6∈Θ 2.
(ii) If f satisfies (3.5), then we can determine whether f ∈Θ 2 by solving the fol-

lowing SDP with only symmetric constraints:

inf 〈C |G〉
s. t. ∑

p,q, p∗q
cyc
∼ v

∨ p∗q
cyc
∼ v∗

Gp,q = ∑
w

cyc∼ v

(aw +aw∗), ∀v ∈W

G � 0,

(CSOHSSDP)

where W is the set of all words from 〈X〉 needed to construct a Θ 2-certificate,
i.e., the set from Theorem 3.10.

Thus we are left with the construction of W, which is related to linear program-
ming problems, as is implied by the following lemma.

Lemma 3.18. Verifying whether w ∈ 〈X〉 satisfies (3.3) is a linear programming
problem.

Proof. Indeed, let f = ∑avv ∈ R〈X〉 of degree ≤ 2d be given and let w ∈ 〈X〉 be a
word for which we want to verify (3.3). Then the following is true:

2deg α w ≤ cdeg α f for all α ∈ Rn

⇔ 2deg α w ≤ deg α [f] for all α ∈ Rn

⇔ 2〈α |dw 〉 ≤ maxv∈cc([f]){〈α |dv 〉} for all α ∈ Rn

⇔ 0 ≤ infα∈Rn maxv∈cc([f]){〈α |dv−2dw 〉}
⇔ 0 ≤ inf{t | 〈α |dv−2dw 〉 ≤ t, ∀v ∈ cc([f]), α ∈ Rn}.

Verifying the last inequality can be done in two steps: (i) solve the linear program-
ming problem

topt = inf t
s. t. 〈α |dv−2dw 〉 ≤ t, ∀v ∈ cc([f])
α ∈ Rn,

(3.6)

and (ii) check if topt ≥ 0.
By composing results from this section we obtain an algorithm to determine

whether a given nc polynomial is cyclically equivalent to a sum of hermitian squares.
We call it the tracial Gram matrix method and describe it in Algorithm 3.1:

3.4 The tracial Gram matrix method 71

Algorithm 3.1: The tracial Gram matrix method for finding Θ 2-certificates.
Input: f ∈ R〈X〉 with f = ∑w∈〈X〉 aww, where aw ∈ R;

1 If f does not satisfy (3.5), then f 6∈Θ 2. Stop;
2 Construct W;
3 Construct data Av,b,C corresponding to (CSOHSSDP);
4 Solve (CSOHSSDP) to obtain G. If it is not feasible, then f 6∈Θ 2. Stop;
5 Compute a decomposition G = RT R;

Output: Sum of hermitian squares cyclically equivalent to f : f
cyc∼ ∑i g∗i gi,

where gi denotes the i-th component of RW;

In Step 5 we can take different decompositions, e.g. a Cholesky decomposition
(which is not unique if G is not positive definite), the eigenvalue decomposition, etc.

The implementation of Step 2 of the tracial Gram matrix method requires, ac-
cording to Lemma 3.18, solving a small linear programming problem (3.6) for
each candidate w for the set W. Each linear program has n + 1 variables with
card(cc([f])) linear inequalities. Solving such linear programs can be done eas-
ily for the problems we are interested in (note that due to limitations related to
SDP solvers and to symbolic operations over lists of monomials we usually con-
sider only nc polynomials f with n+ d ≤ 20 and with not many words). If f is an
nc polynomial in 2 variables and has 10.000 monomials, then we obtain a linear
program (LP) in 3 variables with at most 10.000 constraints. Nowadays LP solvers
solve such problems easily (within a second); see [Mit03] for a comparison of the
state-of-the-art LP solvers and [MPRW09] for a list of efficient alternative methods
to solve semidefinite programs.

If f ∈ R〈X〉 is a polynomial in n variables with deg f = 2d then it is enough to
consider at Step 2 only words w ∈ 〈X〉 such that [w] has degree at most d. Since
there are

(n+d
d

)
different [w] of this type, Step 2 might be still time consuming.

We present the details of the implementation of Step 2 of Algorithm 3.1 in Algo-
rithm 3.2 below (the Newton cyclic chip method).

Algorithm 3.2: The Newton cyclic chip method
Input: f ∈ R〈X〉 with deg f ≤ 2d, f = ∑w∈〈X〉 aww, where aw ∈ R;

1 Let Vd be the vector of all monomials in [x] with degree ≤ d;
2 W :=∅;
3 for every w ∈ Vd do
4 Solve (3.6) to obtain topt;
5 if topt ≥ 0 then
6 W =W ∪{all (non-commutative) permutations of w};
7 end
8 end
9 Sort W in a lexicographic order and transform it into the vector W;

Output: W;

Remark 3.19. As mentioned above we need to run the for loop in Algorithm 3.2(n+d
d

)
-times. For each monomial w which satisfies the condition in Step 5 we add

72 3 Cyclic equivalence to sums of hermitian squares

at most d! words to W in Step 6. Nevertheless, the length of the constructed W is
usually much smaller than the number of all words w ∈ 〈X〉 of degree ≤ d. On the
other hand, it is often much larger than the number of words obtained by the New-
ton chip method (see Algorithm 2.2) developed for the sum of hermitian squares
decomposition.

3.5 Implementation

Coding the tracial Gram matrix method together with the Newton cyclic chip
method needs to be done carefully due to several potential bottlenecks. Obviously
the most expensive part of the Gram matrix method is solving (CSOHSSDP) in Step
4. Its complexity is determined by the order of the matrix variable G and the num-
ber of linear equations. Both parameters are strongly related to the vector W from
Step 2. Indeed, the order of G is exactly the length |W| and the number of linear

equations is at least |W|2
(d+1)(2d−1)! . This follows from the fact that for each product

u∗v, u,v ∈W there are at most d + 1 pairs ui,vi such that u∗i vi = u∗v and at most
(2d−1)! cyclically equivalent products.

The vector W constructed by the Newton cyclic chip method is in general the
best possible and is the default procedure used by NCcycSos in our package
NCSOStools [CKP11] . If we know in advance that it is enough to consider in
(CSOHSSDP) only constraints corresponding to words from a (short) vector V, then
we can use this V as an input to Algorithm 3.1 and skip Step 2 of Algorithm 3.1.

Remark 3.20. In a special case we can construct a further reduced vector W.
Namely, if we know that for a representation f

cyc∼ g ∈ Σ 2 we have that ∑w
cyc∼ v∗v

gw 6=
0 for all hermitian squares v∗v appearing in g, then we can construct W by a slight
generalization of the Newton chip method from [KP10]. In this case we take the
right chips satisfying (3.3) of all hermitian squares which are cyclically equivalent
to words from f instead of all words w ∈ 〈X〉 satisfying (3.3). This works e.g. for
the BMV polynomials (see Subsection 3.5.2) but does not work for, e.g.,

f = 1−4XY X +2X2 +X2Y 4X2 cyc∼ 2(XY −X)(Y X−X)+(X2Y 2−1)(Y 2X2−1).

In fact, the hermitian square 2XY 2X cancels with −X2Y 2 and −Y 2X2 and we don’t
get the necessary words XY and Y X in W by applying the enhancement from this
remark.

We point out that in general the semidefinite program (CSOHSSDP) might have
no strictly feasible points. Absence of (primal) strictly feasible points might cause
numerical difficulties while solving (CSOHSSDP). However, as in Section 2.5, we
can enforce strong duality which is crucial for all SDP solvers by setting the matrix
C in (CSOHSSDP) equal to I (actually any full rank matrix will do). Another source
of numerical problems is the infeasibility of (CSOHSSDP), which is the case when

http://ncsostools.fis.unm.si/

3.5 Implementation 73

f 6∈Θ 2. We point out that SDP solvers which are supported by NCSOStools have
easily overcome these difficulties on all tested instances.

Our implementation of the Newton cyclic chip method is augmented by an ad-
ditional test used to further reduce the length of W. Indeed, if w ∈W satisfies the
following properties:

(i) if u∗v
cyc∼ w∗w for some u,v∈W, then u = v (i.e., any product cyclically equiv-

alent to w∗w is a hermitian square);
(ii) neither w∗w nor any other product cyclically equivalent to w∗w appears in f ,

then we can delete w from W, and also all u with u∗u
cyc∼ w∗w. This test is imple-

mented in the script NCcycSos and is run before solving (CSOHSSDP). It amounts
to finding (iteratively) all equations of the type 〈Aw |G〉 = 0 with Aw non-negative
and diagonal.

3.5.1 Detecting members of Θ 2 by NCSOStools

We implemented the tracial Gram matrix method based on the tracial Newton poly-
tope in the NCcycSos function which is a part of the NCSOStools package. It is
demonstrated in the following examples.

Example 3.21. Consider the nc polynomial f = 4X2Y 10+2XY 2XY 4+4XY 6+Y 2 of
degree 12. There are 127 words in 2 variables of degree ≤ 6 (σ(2,6) = 127). Using
the Newton cyclic chip method (Algorithm 3.2) we get only 16 monomials and after
the additional test mentioned at the end of the previous subsection, we are reduced
to only 12 words in W as we can see with the aid of NCSOStools [CKP11]:

>> NCvars x y
>> f = 4*xˆ2*yˆ10 + 2*x*yˆ2*x*yˆ4 + 4*x*yˆ6 + yˆ2;
>> pars.precision = 1e-3;
>> [IsCycEq,G,W,sohs,g] = NCcycSos(f, pars)

We obtain a numerical confirmation that f is in Θ 2 (IsCycEq=1). Moreover, the
vector given by tracial Newton chip method is

W =
’y’
’y*x*y*y’
’y*y*x*y’
’y*x*y*y*y’
’y*y*x*y*y’
’y*y*y*x*y’
’x*y*y*y*y*y’
’y*x*y*y*y*y’
’y*y*x*y*y*y’
’y*y*y*x*y*y’

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/

74 3 Cyclic equivalence to sums of hermitian squares

’y*y*y*y*x*y’
’y*y*y*y*y*x’

We also obtain the vector

sohs =
x*yˆ5+y+yˆ5*x
y*x*yˆ2
yˆ2*x*y
x*yˆ5-yˆ5*x

containing nc polynomials gi with f
cyc∼ ∑i g∗i gi = g.

Example 3.22. The nc polynomial f = 1+X6 +Y 6 +X3Y 3 +X5Y −Y X5 is cycli-
cally equivalent to SOHS since f

cyc∼ 1+ 3
4 X6 +(1

2 X3 +Y 3)∗(1
2 X3 +Y 3). Running

NCcycSos we obtain a numerical certificate for f ∈Θ 2, but we also see that in this
case the Newton cyclic chip method does not yield any reduction. Indeed, the vector
W returned by NCcycSos contains all possible words of length at most 3 and there
are 15 of them.

3.5.2 BMV polynomials

In an attempt to simplify the calculation of partition functions of quantum me-
chanical systems Bessis, Moussa and Villani [BMV75] conjectured in 1975 that
for any two symmetric matrices A,B, where B is positive semidefinite, the function
t 7→ tr(eA−tB) is the Laplace transform of a positive Borel measure with real sup-
port. The conjecture in its original form has been proved recently by Stahl [Sta13].
This permits the calculation of explicit upper and lower bounds of energy levels in
multiple particle systems, arising from Padé approximants.

Nevertheless, due to an algebraic reformulation of Lieb and Seiringer, the con-
jecture/statement still remains interesting. In their 2004 paper [LS04], Lieb and
Seiringer have given the following purely algebraic reformulation:

Theorem 3.23. The BMV conjecture is equivalent to the following statement:
For all positive semidefinite matrices A and B and all m ∈ N, the polynomial

p(t) := tr((A+ tB)m) ∈ R[t] has only nonnegative coefficients.

The coefficient of tk in p(t) for a given m is the trace of Sm,k(A,B), where
Sm,k(A,B) is the sum of all words of length m in the letters A and B in which B
appears exactly k times. For example,

S4,2(A,B) = A2B2 +ABAB+AB2A+BABA+B2A2 +BA2B.

Sm,k(X ,Y) can thus be considered as an nc polynomial for m ≥ k; it is the sum of
all words in two variables X ,Y of degree m with degree k in Y . Note that Theorem
3.23 considers polynomials in positive semidefinite matrices, while our definition

3.5 Implementation 75

of trace-positivity relates to symmetric matrices - see Definition 1.60. Since any
positive semidefinite matrix is a square of some symmetric matrix, trace-positivity
in the BMV conjecture is equivalent to trace-positivity of of the polynomials Sm,k
in squared matrix variables. Thus by the proof of Stahl [Sta13] one derives that for
each pair (m,k) with m≥ k we have

trSm,k(X2,Y 2)≥ 0.

The question which BMV polynomials Sm,k(X2,Y 2) are cyclically equivalent to
SOHS was an attempt to prove the BMV conjecture. It was completely resolved
(in the positive and in the negative) by Burgdorf [Bur11], Hägele [Häg07], Klep and
Schweighofer [KS08], Dykema et al. [CDTA10], Landweber and Speer [LS09], and
Cafuta et al. [CKP10].

We demonstrate how NCSOStools can be used to show the main result of
[KS08] establishing S14,6(X2,Y 2)∈Θ 2. Together with some easier cases and a result
of Hillar [Hil07] this implies the BMV conjecture for m≤ 13 (which was unsolved
at that time).

Example 3.24. Consider the polynomial f = S14,6(X2,Y 2). To prove (numerically)
that f ∈Θ 2 with the aid of NCSOStools we proceed as follows:

(1) We define two non-commuting variables:

>> NCvars x y;

(2) Our polynomial f is constructed using BMVq(14,6).

>> f=BMVq(14,6);

For a numerical test whether f ∈Θ 2, we first construct a small monomial vector
V [KS08, Proposition 3.3] to be used in the Gram matrix method.

>> [v1,v2,v3]=BMVsets(14,6); V=[v1;v2;v3];
>> params.obj = 0; params.V=V;
>> [IsCycEq,G,W,sohs,g] = NCcycSos(f, params);

This yields a floating point positive definite 70×70 Gram matrix G. The rest of
the output: IsCycEq = 1 since f is (numerically) in Θ 2; W is equal to V, sohs
is a vector of polynomials gi with f

cyc∼ ∑i g∗i gi = g.

To obtain an exact Θ 2-certificate, we can round and project the obtained solution G
to get a positive semidefinite matrix with rational entries that satisfy liner constraints
without any error (see Section 1.13 and Example 3.25 for details).

Example 3.25. In this example we demonstrate how to extract a rational certificate
by the round and project method, described in Theorem 1.80. Let us consider f =
S10,2(X ,Y), i.e., the sum of all words of degree 10 in the nc variables X and Y in
which Y appears exactly twice. To prove that f ∈Θ 2 with the aid of NCSOStools,
proceed as follows:

(1) Define two non-commuting variables:

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/

76 3 Cyclic equivalence to sums of hermitian squares

>> NCvars x y

(2) Our nc polynomial f is constructed using BMV(10,2). For a numerical test
whether f ∈Θ 2, run

>> p.obj = 0;
>> f = BMV(10,2);
>> [IsCycEq,G0,W,sohs,g,SDP_data] = NCcycSos(f,p);

Using the SDP solver SDPT3, this yields a floating point Gram matrix G0

G0 =


5.0000 2.5000 −1.8851 0.8230 −0.0899
2.5000 8.7702 1.6770 −2.7313 0.8230
−1.8851 1.6770 10.6424 1.6770 −1.8851

0.8230 −2.7313 1.6770 8.7702 2.5000
−0.0899 0.8230 −1.8851 2.5000 5.0000


for the word vector

W =
[
X4Y X3Y X X2Y X2 XY X3 Y X4

]T
.

The rest of the output: IsCycEq= 1 since f is (numerically) an element of Θ 2;
sohs is a vector of nc polynomials gi with f

cyc∼ ∑i g∗i gi = g; SDP data is the
SDP data for (CSOHSSDP) constructed from f .

(3) To round and project the obtained floating point solution G0 following Theorem
1.80, feed G0 and SDP data into RprojRldlt:

>> [G,L,D,P,err]=RprojRldlt(G0,SDP_data,true)

This produces a rational Gram matrix G for f with respect to W and its LDU
decomposition PLDLT PT , where P is a permutation matrix, L lower unitrian-
gular, and D a diagonal matrix with positive entries. We caution the reader that
L,D, and G are cells, each containing numerators and denominators separately
as a matrix. Finally, the obtained rational sum of hermitian squares certificate
for f = S10,2(X ,Y) is

f
cyc∼

5

∑
i=1

λig∗i gi

for

g1 = X2Y X2 +
7

44
X3Y X +

7
44

XY X3− 2
11

X4Y − 2
11

Y X4

g2 = X3Y X− 577
1535

XY X3 +
408

1535
X4Y +

188
1535

Y X4

g3 = XY X3 +
11909
45984

X4Y +
7613

15328
Y X4

g4 = X4Y − 296301
647065

Y X4

g5 = Y X4

3.5 Implementation 77

and

λ1 = 11, λ2 =
1535
176

, λ3 =
11496
1535

, λ4 =
647065
183936

, λ5 =
1242629
647065

.

Example 3.26. Let us consider fMot =XY 4X+Y X4Y−3XY 2X+1, a non-commuta-
tive version of the well-known Motzkin polynomial from (1.21), and f = fMot(X3,Y 3)=
X3Y 12X3+Y 3X12Y 3−3X3Y 6X3+1. To prove that f ∈Θ 2 with the aid of NCSOStools,
proceed as follows:

(1) Define two non-commuting variables and the nc polynomial f :

>> NCvars x y
>> f = xˆ3*yˆ12*xˆ3+yˆ3*xˆ12*yˆ3-3*xˆ3*yˆ6*xˆ3 + 1;

(2) Define a custom vector of monomials W
>> W = {’’; ’x*y*y’; ’x*x*y’; ’x*x*y*y*y*y’;
’x*x*x*x*y*y’; ’x*x*x*y*y*y*y*y*y’; ’x*x*x*x*y*y*y*y*y’;
’x*x*x*x*x*y*y*y*y’; ’x*x*x*x*x*x*y*y*y’};

(3) For a numerical test whether f ∈Θ 2, run

>> param.V = W;
>> [IsCycEq,G0,W,sohs,g,SDP_data] = NCcycSos(f,param);

This yields a floating point Gram matrix G0 that is singular.
(4) Try to round and project the obtained floating point solution G0, feed G0 and

SDP data into RprojRldlt:

>> [G,L,D,P,err] = RprojRldlt(G0,SDP_data)

This exits with an error, since, unlike in Example 3.25, the rounding and pro-
jecting alone does not yield a rational feasible point.

(5) Instead, let us reexamine G0. A detailed look at the matrix reveals three nullvec-
tors. We thus run our interactive procedure which aids the computer in reducing
the size of the SDP as in Theorem 1.81.

>> [G,SDP_data] = fac_reduct(f,param)

This leads the computer to return a floating point feasible point G0 ∈ R9×9 and
the data for this SDP, SDP data. It also stays in interactive mode and the user
can inspect the matrix and enter the nullvector z to be used in the dimension
reduction. We feed in three nullvectors as a matrix of three columns:

K>> z = [0 -1 0; -1 0 0; 0 0 1; 0 -1 0; 0 -1 0;
-1 0 0; 0 0 1; -1 0 0; 0 0 1];
K >> return

Inside the interactive routine this enables the computer to produce a positive
definite feasible Ĝ0 ∈ R6×6. Hence we exit the interactive routine.

K>> stop = 1; return

http://ncsostools.fis.unm.si/

78 References

Now, NCSOStools [CKP11] uses Ĝ0 to produce a rational positive semidef-
inite Gram matrix G for f , which proves f ∈Θ 2. As in the Example 3.25, the
solution G, returned by the fac reduct is a cell containing two 9×9 matrices
with numerators and denominators of the rational entries of G. The reader can
verify that f

cyc∼ W∗GW exactly by doing rational arithmetic or approximately
by computing floating point approximation for G and using floating point arith-
metic.

(6) To compute the LDU decomposition PLDLT PT for the rational Gram matrix G
of f with respect to W (where G,L,D are cells, each containing numerators and
denominators separately as a matrix) run

>> [L,D,P] = Rldlt(G)

The obtained rational sum of hermitian squares certificate for fMot(X3,Y 3) is
then

fMot(X3,Y 3)
cyc∼

6

∑
i=1

λig∗i gi

for

g1 = 1− 1
2

X2Y 4− 1
2

X4Y 2

g2 = XY 2− 1
2

X3Y 6− 1
2

X5Y 4

g3 = X2Y − 1
2

X4Y 5− 1
2

X6Y 3

g4 = X2Y 4−X4Y 2

g5 = X3Y 6−X5Y 4

g6 = X4Y 5−X6Y 3

and
λ1 = λ2 = λ3 = 1, λ4 = λ5 = λ6 =

3
4
.

Remark 3.27. We point out that this yields a rational sum of squares certificate for
f̌ (x3,y3) where f̌ (x,y) = 1+x4y2 +x2y4−3x2y2 is the commutative Motzkin poly-
nomial.

References

[BCKP13] Sabine Burgdorf, Kristijan Cafuta, Igor Klep, and Janez Povh. The
tracial moment problem and trace-optimization of polynomials. Math.
Program., 137(1-2):557–578, 2013.

[BMV75] Daniel Bessis, Pierre Moussa, and Matteo Villani. Monotonic con-
verging variational approximations to the functional integrals in quan-

http://ncsostools.fis.unm.si/

References 79

tum statistical mechanics. J. Mathematical Phys., 16(11):2318–2325,
1975.

[Bur11] Sabine Burgdorf. Sums of hermitian squares as an approach to the
BMV conjecture. Linear and Multilinear Algebra, 59(1):1–9, 2011.

[CDTA10] Benoı̂t Collins, Kenneth J. Dykema, and Francisco Torres-Ayala. Sum-
of-squares results for polynomials related to the Bessis-Moussa-Villani
conjecture. J. Stat. Phys., 139(5):779–799, 2010.

[CKP10] Kristijan Cafuta, Igor Klep, and Janez Povh. A note on the nonex-
istence of sum of squares certificates for the Bessis-Moussa-Villani
conjecture. J. math. phys., 51(8):083521, 10, 2010.

[CKP11] Kristijan Cafuta, Igor Klep, and Janez Povh. NCSOStools: a computer
algebra system for symbolic and numerical computation with noncom-
mutative polynomials. Optim. Methods. Softw., 26(3):363–380, 2011.
Available from http://ncsostools.fis.unm.si/.

[CKP14] Kristijan Cafuta, Igor Klep, and Janez Povh. Rational sums of her-
mitian squares of free noncommutative polynomials. Ars Math. Con-
temp., 9(2), 2014.

[CLR95] Man-Duen Choi, Tsit Y. Lam, and Bruce Reznick. Sums of squares
of real polynomials. In K-theory and algebraic geometry: connections
with quadratic forms and division algebras (Santa Barbara,CA, 1992),
volume 58 of Proc. Sympos. Pure Math., pages 103–126. Amer. Math.
Soc., Providence, RI, 1995.

[Häg07] Daniel Hägele. Proof of the cases p ≤ 7 of the Lieb-Seiringer for-
mulation of the Bessis-Moussa-Villani conjecture. J. Stat. Phys.,
127(6):1167–1171, 2007.

[HdKR02] Margaréta Halická, Etienne de Klerk, and Cornelis Roos. On the con-
vergence of the central path in semidefinite optimization. SIAM J. Op-
tim., 12(4):1090–1099, 2002.

[Hil07] Christopher J. Hillar. Advances on the Bessis-Moussa-Villani trace
conjecture. Linear Algebra Appl., 426(1):130–142, 2007.

[KP10] Igor Klep and Janez Povh. Semidefinite programming and sums of her-
mitian squares of noncommutative polynomials. J. Pure Appl. Algebra,
214:740–749, 2010.

[KS08] Igor Klep and Markus Schweighofer. Sums of Hermitian squares and
the BMV conjecture. J. Stat. Phys, 133(4):739–760, 2008.

[LS04] Elliott H. Lieb and Robert Seiringer. Equivalent forms of the Bessis-
Moussa-Villani conjecture. J. Statist. Phys., 115(1-2):185–190, 2004.

[LS09] Peter S. Landweber and Eugene R. Speer. On D. Hägele’s ap-
proach to the Bessis-Moussa-Villani conjecture. Linear Algebra Appl.,
431(8):1317–1324, 2009.

[Mit03] Hans D. Mittelmann. An independent benchmarking of SDP and
SOCP solvers. Math. Program. B, 95:407–430, 2003. http://
plato.asu.edu/bench.html.

http://ncsostools.fis.unm.si/
http://plato.asu.edu/bench.html
http://plato.asu.edu/bench.html

80 References

[MPRW09] Jérôme Malick, Janez Povh, Franz Rendl, and Angelika Wiegele. Reg-
ularization methods for semidefinite programming. SIAM J. Optim.,
20(1):336–356, 2009.

[Par03] Pablo A. Parrilo. Semidefinite programming relaxations for semialge-
braic problems. Math. Program., 96(2, Ser. B):293–320, 2003.

[Rez78] Bruce Reznick. Extremal PSD forms with few terms. Duke Math. J.,
45(2):363–374, 1978.

[RFP10] Benjamin Recht, Maryam Fazel, and Pablo A. Parrilo. Guaranteed
minimum-rank solutions of linear matrix equations via nuclear norm
minimization. SIAM Rev., 52(3):471–501, 2010.

[Sta13] Herbert R. Stahl. Proof of the BMV conjecture. Acta Math.,
211(2):255–290, 2013.

Chapter 4
Eigenvalue optimization of polynomials in
non-commuting variables

4.1 Introduction

In Section 1.6 we introduced a natural notion of positivity that corresponds exactly
to nc polynomials that are SOHS. Recall that an nc polynomial is positive semidefi-
nite if it yields a positive semidefinite matrix when we replace the letters (variables)
in the polynomial by symmetric matrices of the same order. Helton’s Theorem 1.30
implies that positive semidefinite polynomials are exactly the SOHS polynomials,
the set of which we denoted by Σ 2.

In this chapter we consider the following question: what is the smallest eigen-
value that a given nc polynomial can attain on a tuple of symmetric matrices from a
given semialgebraic set? This is in general a difficult problem. Inspired by the com-
mutative approach of Henrion and Lasserre [HL05] which has been implemented in
GloptiPoly [HLL09] we propose a hierarchy of semidefinite programming problems
yielding an increasing sequence of lower bounds for the optimum value that we are
interested in.

Contrary to the commutative case we prove that for the unconstrained problems
and the constrained problems over the nc ball and the nc polydisc the hierarchy of
SDPs is finite, i.e., we can compute the global optimum by solving a single instance
of a semidefinite programming problem. If the underlying semialgebraic set is more
general but the related quadratic module is still archimedean then the sequence is
converging to the desired optimum. It is even finitely convergent if at some point we
find a flat optimal solution of the corresponding SDP. We also prove that in all cases
of finite convergence we are able to extract optimizers using the GNS construction,
presented in Algorithm 1.1.

81

82 4 Eigenvalue optimization of polynomials in non-commuting variables

4.2 Unconstrained optimization

4.2.1 Unconstrained optimization as a single SDP

We start with the question how close to (or how far from) positive semidefiniteness
a given nc polynomial is. More precisely, given f ∈ SymR〈X〉 of degree 2d, what
is its smallest eigenvalue:

λmin(f) := inf
{
〈 f (A)v |v〉 | A ∈ Sn, v a unit vector

}
. (Eigmin)

Hence λmin(f) is the greatest lower bound on the eigenvalues of f (A) taken over
all n-tuples A of real symmetric matrices of the same order (we denote such tuples
by Sn, where n is the number of nc variables). Therefore (f −λmin(f))(A) � 0 for
all A ∈ Sn and λmin(f) is the largest real number with this property.

Problem (Eigmin) is equivalent to (i.e., has equal optimum to):

λmin(f) = sup λ

s. t. f (A)−λ I � 0, ∀A ∈ Sn.
(Eig′min)

Helton’s Theorem 1.30 implies that (Eig′min) is equivalent to:

λmin(f) = sup λ

s. t. f −λ ∈ Σ 2
2d .

(Eig(d)SDP)

This is a semidefinite programming problem which can be explicitly stated as

sup f1−〈E1,1 |F 〉
s. t. f − f1 = W∗

d(F−〈E1,1 |F 〉E1,1)Wd
F � 0.

(Eig(d)SDP′)

By f1 we denote the constant term of f and E1,1 is the matrix with all entries 0
except for the (1,1) entry which is 1.

Using standard Lagrange duality approach we obtain the dual of (Eig(d)SDP):

λmin(f) = sup
f−λ∈Σ2

2d

λ = sup
λ

inf
L∈(Σ2

2d)
∨
(λ +L(f −λ)) (4.1)

≤ inf
L∈(Σ2

2d)
∨

sup
λ

(λ +L(f −λ)) (4.2)

= inf
L∈(Σ2

2d)
∨
(L(f)+ sup

λ

λ (1−L(1))) (4.3)

= inf L(f)
L ∈ (Σ 2

2d)
∨

L(1) = 1
(4.4)

4.2 Unconstrained optimization 83

= inf 〈HL |G f 〉 (Eig(d)DSDP)

s. t. (HL)u,v = (HL)w,z for all u∗v = w∗z,
(HL)1,1 = 1,

HL � 0.

=: Lsohs

The resulting problem (Eig(d)DSDP) is obviously a semidefinite programming prob-
lem. The second equality in (4.1) is a standard transformation of the cone constraint:
the inner minimization problem gives optimal value 0 if and only if f − λ ∈ Σ 2

2d .
Inequality (4.2) is obvious. The inner problem in (4.3) is bounded (with optimum
0) if and only if L(1) = 1, i.e., L is unital. Formulation (Eig(d)DSDP) is based on the
matrix formulation of (Σ 2

2d)
∨ from Corollary 1.45. The matrix G f is a Gram matrix

for f .

Theorem 4.1. (Eig(d)SDP) satisfies strong duality.

Proof. Clearly, λmin(f) ≤ Lsohs (weak duality). The dual problem (Eig(d)DSDP) is al-
ways feasible (e.g., HL = E11 is feasible), hence Lsohs < ∞.

Suppose first that (Eig(d)SDP) is feasible, hence Lsohs ≥ λmin(f) > −∞. Note that
L(f −Lsohs)≥ 0 for all L in the dual cone (Σ 2

2d)
∨. This means that f −Lsohs belongs

to the closure of Σ 2
2d , so by Proposition 1.20, f −Lsohs ∈ Σ 2

2d . Hence Lsohs≤ λmin(f).
Let us consider the case when (Eig(d)SDP) is infeasible, i.e., f ∈ SymR〈X〉2d is not

bounded from below. Then for every a ∈ R, f − a is not an element of the closed
convex cone Σ 2

2d . Thus by the Hahn-Banach separation theorem, there exists a linear
functional L : SymR〈X〉2d → R satisfying L(Σ 2

2d)⊆ [0,∞), L(1) = 1 and L(f)< a.
As a was arbitrary, this shows that the dual problem (Eig(d)DSDP) is unbounded, hence
strong duality holds in this case as well.

We point out that unlike optimization of polynomials in commuting variables
which requires a sequence of SDPs to compute the minimum, for nc polynomials
a single SDP suffices to compute λmin(f) (recall this is an unconstrained optimiza-
tion).

Corollary 4.2. Given f ∈R〈X〉2d , we can compute λmin(f) by solving a single SDP
in the primal form (Eig(d)SDP′) or in the dual form (Eig(d)DSDP).

Once we have computed the optimal value λmin(f) we may also ask for the n-
tuple A such that λmin(f) = λmin f (A). We explain how to compute such A in the
following section.

84 4 Eigenvalue optimization of polynomials in non-commuting variables

4.2.2 Extracting optimizers for the unconstrained case

In this subsection we explain how to find a pair (A,v) such that λmin(f)= 〈 f (A)v |v〉
provided such a pair exists. Flatness of the dual optimal solution is a key property
that leads to such a pair.

Proposition 4.3. Suppose λmin(f)>−∞. If the infimum of (Eig(d+1)
DSDP) is attained at

a Hankel matrix HL, then it is also attained at a Hankel matrix HL̂ which is 1-flat.

Proof. Let

HL =

[
Hd B
BT C

]
for some B,C. Here Hd corresponds to rows and columns of HL labeled by words
of length ≤ d. Since HL and Hd are positive semidefinite, B = HdZ and C � ZT HdZ
for some Z, as follows from Proposition 1.11. Now we form a “new” HL̂:

HL̂ =

[
Hd B
BT ZT HdZ

]
=
[
I Z
]T Hd

[
I Z
]
. (4.5)

This matrix is obviously 1-flat over Hd , positive semidefinite, and satisfies the nc
Hankel condition (it is inherited from HL since for all quadruples u,v,z,w of words
of degree d + 1 we have u∗v = z∗w ⇐⇒ u = z and z = w). Moreover, we have
〈HL |G f 〉= 〈HL̂ |G f 〉.

Proposition 4.4. Let f ∈ R〈X〉2d . Then λmin(f) is attained if and only if there is a
feasible solution HL for (Eig(d+1)

DSDP) satisfying 〈HL |G f 〉= λmin(f).

Proof. (⇒) If λmin(f) = 〈 f (A)v |v〉 holds for some A ∈ Sn and unit vector v ∈ Rn,
then L(p) := 〈 p(A)v |v〉 is the linear functional with Hankel matrix HL which is the
desired feasible solution for (Eig(d+1)

DSDP). (⇐) By Proposition 4.3, we may assume
that HL is 1-flat over Hd (upper left hand block of HL corresponding to degree ≤ d).
Now Theorem 1.69 and Algorithm 1.1 apply to the linear functional L corresponding
to HL and yield a tuple A of symmetric matrices and a vector v such that L(f) =
〈 f (A)v |v〉. By construction, ‖v‖=

√
〈v |v〉=

√
L(1) = 1. Hence f (A) has (unit)

eigenvector v with eigenvalue λmin(f).

4.2 Unconstrained optimization 85

We can extract optimizers for (Eigmin) by the following algorithm.

Algorithm 4.1: Algorithm for finding optimal solutions for (Eigmin)
Input: f ∈ SymR〈X〉2d ;

1 Solve (Eig(d+1)
DSDP);

2 if the problem is unbounded or the optimum is not attained then
3 Stop;
4 end
5 Let HL denote an optimizer. We modify HL into a 1-flat positive semidefinite

matrix HL̂ as in (4.5). This matrix yields a positive linear map L̂ on
R〈X〉2d+2 which is 1-flat. In particular, L̂(f) = L(f) = λmin(f);

6 Use the finite-dimensional GNS construction (Algorithm 1.1) on L̂ to
compute an n-tuple of symmetric matrices A and a vector v with
L̂(f) = λmin(f) = 〈 f (A)v |v〉;

Output: L̂, A, v;

In Step 6, to construct symmetric matrix representations Ai ∈ Rr×r of the mul-
tiplication operators; we calculate their image according to a chosen basis B for
E = ranHL̂. To be more specific, the vector Aiu1, where u1 ∈ 〈X〉d is the first label
in B, can be written as a unique linear combination ∑

s
j=1 λ juj with words u j label-

ing B such that L
(
(u1Xi−∑λ ju j)

∗(u1Xi−∑λ ju j)
)
= 0. Then

[
λ1 . . . λs

]T will be
the first column of Ai.

Example 4.5. Let f = Y 2 + (XY − 1)∗(XY − 1). Clearly, λmin(f) ≥ 0. However,
f
(
1/ε,ε) = ε2, so λmin(f) = 0 and hence Lsohs = 0. On the other hand, λmin(f)

and the dual optimum Lsohs are not attained.
Let us first consider λmin(f). Suppose (A,B) is a pair of matrices yielding a

singular f (A,B) and let v be a nullvector. Then

B2v = 0 and (AB− I)∗(AB− I)v = 0.

From the former we obtain Bv = 0, whence

v = Iv =−(AB− I)v = 0,

a contradiction.
We now turn to the nonexistence of a dual optimizer. Suppose otherwise and let

HL be the optimal solution of (Eig(2)DSDP) and L be the corresponding linear operator,
i.e L : SymR〈X〉4 → R with L(1) = 1. We extend L to R〈X〉4 by symmetrization.
That is,

L(p) :=
1
2

L(p+ p∗).

We note that L induces a semi-scalar product (i.e., a positive semidefinite bilinear
form) (p,q) 7→ L(p∗q) on R〈X〉2 due to the positivity property. Since L(f) = 0, we
have

L(Y 2) = 0 and L
(
(XY −1)∗(XY −1)

)
= 0.

86 4 Eigenvalue optimization of polynomials in non-commuting variables

Hence by the Cauchy-Schwarz inequality, L(XY) = L(Y X) = 0. Thus

0 = L
(
(XY −1)∗(XY −1)

)
= L
(
(XY)∗(XY)

)
+L(1)≥ L(1) = 1,

a contradiction.
Note that similar situation happens if we consider f as a commutative polynomial

with global infimum 0 that is not attained.

4.3 Constrained eigenvalue optimization of non-commutative
polynomials

4.3.1 Approximation hierarchy

The main problem in constrained eigenvalue optimization of nc polynomials can
be stated as follows. Given f ∈ SymR〈X〉2d and a subset S = {g1,g2, . . . ,gt} ⊆
SymR〈X〉, compute

λmin(f ,S) := inf
{
〈 f (A)v |v〉 | A ∈D∞

S , v a unit vector
}
. (Constr-Eigmin)

Hence λmin(f ,S) is the greatest lower bound on the eigenvalues of f (A) taken over
all tuples A of bounded self-adjoint operators on a separable infinite-dimensional
Hilbert space which satisfy gi(A)� 0 for all gi ∈ S. That is, (f −λmin(f ,S))(A)� 0
for all A ∈D∞

S , and λmin(f ,S) is the largest real number with this property.
Similarly to the unconstrained case we can reformulate (Constr-Eigmin) into

λmin(f ,S) = sup λ

s. t. f (A)−λ I � 0, ∀A ∈D∞
S .

(Constr-Eig′min)

Following Pironio, Navascués and Acı́n [PNA10] (see also [CKP12]) we get
the hierarchy of primal lower bounds for λmin(f ,S), which is essentially based on
Proposition 1.25:

λmin(f ,S) ≥ f (s)sohs := sup λ

s. t. f −λ ∈MS,2s,
(Constr-Eig(s)SDP)

for s≥ d (for s < d the problem is infeasible). Recall MS,2s is the truncated quadratic
module generated by S - see (1.7). Problem (Constr-Eig(s)SDP) is a semidefinite pro-
gramming problem, as seen from the following proposition.

Proposition 4.6. Let f = ∑w fww ∈ SymR〈X〉2d and S = {g1, . . . ,gt} ⊆ SymR〈X〉
with gi = ∑w∈〈X〉deggi

gi
ww. Then f ∈ MS,2d if and only if there exists a positive

semidefinite matrix A of order σ(d) and positive semidefinite matrices Bi of order
σ(di) (di = bd−deg(gi)/2c) such that for all w ∈ 〈X〉2d ,

4.3 Constrained eigenvalue optimization of non-commutative polynomials 87

fw = ∑
u,v∈〈X〉d

u∗v=w

Au,v +∑
i

∑
u,v∈〈X〉di

,z∈〈X〉deggi
u∗zv=w

gi
zB

i
u,v. (4.6)

Proof. We start with the “only if” part. Suppose f ∈ MS,2d , hence there exist nc
polynomials a j = ∑w∈〈X〉d a j

ww and bi, j = ∑w∈〈X〉di
bi, j

w w such that

f = ∑
j

a∗ja j +∑
i, j

b∗i, jgibi, j.

In particular this means that for every w ∈ 〈X〉2d the following must hold:

fw = ∑
j

∑
u,v∈〈X〉d

u∗v=w

a j
ua j

vu∗v+∑
i, j

∑
u,v∈〈X〉di

,z∈〈X〉deggi
u∗zv=w

bi, j
u bi, j

v gi
zu
∗zv

= ∑
u,v∈〈X〉d

u∗v=w

u∗v∑
i

ai
uai

v +∑
i

∑
u,v∈〈X〉di

,z∈〈X〉deggi
u∗zv=w

gi
zu
∗zv∑

j
bi, j

u bi, j
v .

If we define the matrix A of order σ(d) and matrices Bi of order σ(di) by
Au,v = ∑i ai

uai
v and Bi

u,v = ∑ j bi, j
u bi, j

v , then these matrices are positive semidefinite
and satisfy (4.6).

To prove the “if” part we use that A and Bi are positive semidefinite, therefore
we can find (column) vectors Ai and Bi, j such that A = ∑i AiAT

i and Bi = ∑ j Bi, jBT
i, j.

These vectors yield nc polynomials ai = AT
i Wσ(d) and bi, j = BT

i, jWσ(di), which give
a certificate for f ∈MS,2d .

Remark 4.7. The last part of the proof of Proposition 4.6 explains how to construct
the certificate for f ∈ MS,2d . First we solve the semidefinite feasibility problem in
the variables A∈ S+

σ(d), Bi ∈ S+
σ(di)

subject to constraints (4.6). Then we compute by

Cholesky or eigenvalue decomposition column vectors Ai ∈ Rσ(d) and Bi, j ∈ Rσ(di)

which yield desired polynomial certificates ai ∈ R〈X〉d and bi, j ∈ R〈X〉di .

Proposition 4.6 implies that (Constr-Eig(s)SDP) is an SDP. It can be explicitly presented
as

f (s)sohs = sup f1−A1,1−∑i gi
1Bi

1,1

s. t. fw = ∑
u,v∈〈X〉s
u∗v=w

Au,v +∑
i

∑
u,v∈〈X〉di

,z∈〈X〉deggi
u∗zv=w

gi
zB

i
u,v

for all 1 6= w ∈ 〈X〉2d ,

A ∈ S+
σ(d), Bi ∈ S+

σ(di)
,

(Constr-Eig(s)SDP′)

where we use di = bs−deg(gi)/2c (note that here di depends on s).
To construct the dual to (Constr-Eig(s)SDP′) we first consider the dual cone to MS,2s.

Lemma 4.8. Let the constant polynomial 1 belong to S. Then

88 4 Eigenvalue optimization of polynomials in non-commuting variables

M∨S,2s ={L : R〈X〉2s→ R | L linear, L(p∗gp)≥ 0 ∀p ∈ R〈X〉di , g ∈ S}
∼={HL | HL ∈ S+

σ(s),H
⇑
L,gi
∈ S+

σ(di)
∀gi ∈ S},

where HL is a Hankel matrix and H⇑L,gi
are localizing matrices corresponding to HL

and S.

By repeating the line of reasoning (4.1)–(4.4) we obtain the dual for
(Constr-Eig(s)SDP):

f (s)sohs ≤ L(s)
sohs = inf〈HL |G f 〉

s. t. HL satisfies nc Hankel condition
HL ∈ S+

σ(s),

H⇑L,gi
∈ S+

σ(di)
∀gi ∈ S

(HL)1,1 = 1.

(Constr-Eig(s)DSDP)

We can prove that the dual problems have Slater points under mild conditions,
i.e., L(s)

sohs = f (s)sohs, for all s≥ d, cf. [CKP12, Proposition 4.4].

Proposition 4.9. Suppose DS contains an ε-neighborhood of 0. Then the SDP
(Constr-Eig(s)DSDP) admits Slater points.

Proof. For this it suffices to find a linear map L : SymR〈X〉2s → R satisfying
L(p∗p)> 0 for all nonzero p∈R〈X〉s, and L(b∗gib)> 0 for all nonzero b∈R〈X〉di .
We again exploit the fact that there are no nonzero polynomial identities that hold
for all orders of matrices, which was used already in Section 1.7.

Let us choose N > s and enumerate a dense subset U of N×N matrices from
DS (for instance, take all N×N matrices from DS with entries in Q), that is,

U = {A(k) := (A(k)
1 , . . . ,A(k)

n) | k ∈ N, A(k) ∈DS(N)}.

To each A ∈U we associate the linear map

LA : SymR〈X〉2s→ R, f 7→ tr f (A).

Form

L :=
∞

∑
k=1

2−k
LA(k)

‖LA(k)‖
.

We claim that L is the desired linear functional.
Obviously, L(p∗p)≥ 0 for all p ∈ R〈X〉s. Suppose L(p∗p) = 0 for some

p ∈ R〈X〉s. Then LA(k)(p∗p) = 0 for all k ∈ N, i.e., for all k we have

tr p∗(A(k))p(A(k)) = 0,

hence p∗(A(k))p(A(k)) = 0, therefore p(A(k)) = 0. Since U was dense in DS(N),
by continuity it follows that p vanishes on all n-tuples from DS(N). Since N was

4.3 Constrained eigenvalue optimization of non-commutative polynomials 89

arbitrary p vanishes on all n-tuples from DS, therefore it vanishes also on an ε-
neighborhood of 0 hence p = 0 by Lemma 1.36.

Similarly, since free algebra has no zero-divisors, L(b∗gib) = 0 implies b = 0 for
all b ∈ R〈X〉di .

Remark 4.10. Having Slater points for (Constr-Eig(s)DSDP) is important for the clean
duality theory of SDP to kick in [VB96, dK02]. In particular, there is no duality gap,
so L(s)

sohs = f (s)sohs.

Corollary 4.11. Suppose DS contains an ε-neighborhood of 0 and the quadratic
module MS is archimedean. Then the following is true for every f ∈ SymR〈X〉:

lim
s→∞

f (s)sohs = lim
s→∞

L(s)
sohs = λmin(f ,S) (4.7)

Proof. For every λ < λmin(f ,S) we have f −λ is positive definite on D∞
S , therefore

Theorem 1.32 implies that f −λ ∈MS which means f −λ ∈MS,2sλ
for appropriate

sλ . Hence λmin(f ,S) ≥ f (sλ)
sohs = L(sλ)

sohs ≥ λ . Since λ < λmin(f ,S) was arbitrary, the
statement follows.

Another very important question is if L(s)
sohs is attained. This is closely related to

extraction of optimizers for (Constr-Eigmin), as we shall explain in the next section.

4.3.2 Extracting optimizers

In this section we study two questions: (i) is the convergence in (4.7) finite and (ii)
can we extract optimizers for (Constr-Eigmin), i.e., can we construct A ∈ D∞

S and
unit vector v such that λmin(f ,S) = 〈 f (A)v |v〉? We recall Theorem 1.69 adapted to
our situation: a sufficient condition (close to being necessary) for positive answers
to both questions is flatness of the optimal solution for (Constr-Eig(s)DSDP) for some
s≥ d.

Theorem 4.12. Suppose DS contains an ε-neighborhood of 0. Let HL be an optimal
solution for (Constr-Eig(s)DSDP) for s≥ d+δ , which is δ -flat (δ = dmaxi deg(gi)/2e).
Then there exist A ∈DS(r) for some r and a unit vector v such that

λmin(f ,S) = 〈HL |G f 〉= 〈 f (A)v |v〉.

Theorem 4.12 implies that for solving (Constr-Eig(s)SDP) it is crucial to compute

a δ -flat optimal solution for (Constr-Eig(s)DSDP) for some s ≥ d + δ . Recently Nie
[Nie14] presented a hierarchy of semidefinite programming problems, similar to
(Constr-Eig(s)DSDP), with a random objective function that under mild conditions con-

90 4 Eigenvalue optimization of polynomials in non-commuting variables

verges to a flat solution. Motivated by his ideas we present the following algorithm:

Algorithm 4.2: Randomized algorithm for finding flat optimal solutions for
(Constr-Eig(s)DSDP)

Input: f ∈ SymR〈X〉2d , S = {g1, . . . ,gt}, δ = dmaxi deg(gi)/2e, δmax;
1 Hflat = 0;
2 for s = d +δ ,d +δ +1, ...,d +δ +δmax do
3 Compute H(s)

L – the optimal solution for (Constr-Eig(s)DSDP);

4 if H(s)
L is δ -flat then

5 Hflat = H(s)
L . Stop;

6 end
7 Compute H(s)

rand – the optimal solution for (Constr-Eig(s)RAND);

8 if H(s)
rand is δ -flat then

9 Hflat = H(s)
rand. Stop;

10 end
11 end

Output: Hflat;

If Algorithm 4.2 returns a flat solution then we can enter this solution to Algo-
rithm 1.1 to obtain A ∈DS and vector v such that λmin(f ,S) = 〈 f (A)v,v〉.

In Step 7 of Algorithm 4.2 we are solving the following semidefinite program

inf 〈HL |R〉
s. t. (HL)u,v = L(u∗v), for all u,v ∈ 〈X〉s

(HL)u,v = L(s)(u∗v), for all u,v ∈ 〈X〉s−δ

HL ∈ S+
σ(s), H⇑L,gi

∈ S+
σ(di)

, ∀i
(H⇑L,gi

)u,v = L(u∗giv), for all u,v ∈ 〈X〉di

L linear functional on R〈X〉2s.

(Constr-Eig(s)RAND)

The objective function is random: we use R which is a random positive definite
Gram matrix (corresponding to a random sum of hermitian squares polynomial).
In practice (also in the NCSOStools [CKP11] implementation) we repeat Step 7
several times since it is cheaper to compute (Constr-Eig(s)RAND) multiple times than
going to the next value of s.

The second constraint in (Constr-Eig(s)RAND) implies that the solution L of this
problem must coincide with L(s) on 〈X〉2(s−δ), i.e., the nc Hankel matrices solv-

ing (Constr-Eig(s)DSDP) and (Constr-Eig(s)RAND) have the same upper left hand corner,
indexed by words in 〈X〉s−δ .

Random polynomials were generated using a sparse random symmetric matrix
(with elements coming from a standard normal distribution) of order σ(d) with
proportion of non-zero elements 0.2, for n = 2,3 and 2d = 2,4,6. We called in
Matlab

http://ncsostools.fis.unm.si/

4.4 Constrained optimization over the nc ball and the nc polydisc 91

>>R=sprandn(length(W),length(W),0.2);
>>R=R+R’;
>>poly = W’*R*W;

Here W is the vector with all monomials of degree ≤ d.
Following Nie we expect that Algorithm 4.2 will often find a δ -flat extension. As

we reported in [KP16] Algorithm 4.2 almost always returns a flat optimal solution
when we optimize a random polynomial over S = {1−∑i X4

i }. The flat solution was
found in almost all cases in Step 7. We tested δ -flatness of H(s)

rand by comparing the

rank of H(s)
rand with the rank of its top left hand part and by computing errflat from

(1.15).
Once we have a δ -flat solution for (Constr-Eig(s)DSDP) we extract an optimizer, i.e.,

a pair A ∈DS(r) and v ∈Rr such that λmin(f ,S) = 〈 f (A)v |v〉, by running the GNS
construction, i.e., by executing Step 6 from Algorithm 4.1.

4.4 Constrained optimization over the nc ball and the nc polydisc

4.4.1 Approximation hierarchies contain only one member

In this section we consider constrained eigenvalue optimization over nc semialge-
braic sets defined by B= {1−∑i X2

i } (nc ball) and D= {1−X2
1 ,1−X2

2 , . . . ,1−X2
n }

(nc polydisc). We denote these semialgebraic sets by DB and DD, respectively (see
Definition 1.23).

Remark 4.13. Note that for obvious reasons DB and DD contain an nc ε-neighbor-
hood of 0, since DB itself is an Nε for ε = 1 while DD contains N1. This in partic-
ular implies that MB,2d and MD,2d are closed convex cones in the finite dimensional
real vector space SymR〈X〉2d , see Proposition 1.38.

We first prove a stronger version of Proposition 1.25.

Proposition 4.14.

(i) Suppose f = ∑i g∗i gi +∑i h∗i (1−∑ j X2
j)hi ∈MB,2d . Then

f |DB = 0 ⇔ gi = hi = 0 for all i.

(ii) Suppose f = ∑i g∗i gi +∑i, j h∗i, j(1−X2
j)hi, j ∈MD,2d . Then

f |DD = 0 ⇔ gi = hi, j = 0 for all i, j.

Proof. We only need to prove the (⇒) implication, since (⇐) is obvious. We give
the proof of (i); the proof of (ii) is a verbatim copy.

Consider f = ∑i g∗i gi +∑i h∗i (1−∑ j X2
j)hi ∈ MB,2d satisfying f (A) = 0 for all

A ∈DB. Let us choose N > d and A ∈DB(N). Obviously we have

92 4 Eigenvalue optimization of polynomials in non-commuting variables

gi(A)T gi(A)� 0 and hi(A)T (1−∑
j

A2
j)hi(A)� 0.

Since f (A) = 0 this yields

gi(A) = 0 and hi(A)T (1−∑
j

A2
j)hi(A) = 0 for all i.

Since N was chosen arbitrary gi vanishes on DB. By Remark 4.13 and Lemma 1.35,
gi = 0 for all i. Likewise, h∗i (1−∑ j X2

j)hi = 0 for all i. As there are no zero divisors
in the free algebra R〈X〉, the latter implies hi = 0.

The following theorem drastically simplifies constrained optimization over the
nc ball or the nc polydisc.

Theorem 4.15 (Nichtnegativstellensatz). Let f ∈ SymR〈X〉2d+1.

(i) f |DB � 0 if and only if f ∈MB,2d+2.
(ii) f |DD � 0 if and only if f ∈MD,2d+2.

Proof. We prove (i) and leave (ii) as an exercise for the reader. The implication (⇐)
is trivial (cf. Proposition 1.25), so we only consider the converse.

Assume f 6∈MB,2d+2. By Remark 4.13, the truncated quadratic module MB,2d+2
is closed. So by the Hahn-Banach theorem there exists a linear functional

L : R〈X〉2d+2→ R

satisfying
L
(
MB,2d+2

)
⊆ [0,∞), L(f)< 0.

We modify L by adding to it a small multiple of a linear functional L+ :R〈X〉2d+2→
R that is nonnegative on MB,2d+2 and strictly positive on Σ 2

2d ; such an L+ was con-
structed in the proof of Proposition 4.9. This new L satisfies

L : R〈X〉2d+2→ R

and
L
(
MB,2d+2

)
⊆ [0,∞), L

(
Σ

2
2d \{0}

)
⊆ (0,∞), L(f)< 0. (4.8)

Let Ľ := L2d+1 = L|R〈X〉2d+1
, which is L, restricted to R〈X〉2d+1.

There is a positive 1-flat linear functional L̂ : R〈X〉2d+2 → R extending Ľ. To
prove this let consider the Hankel matrix HL presented in block form

HL =

[
HĽ B
BT C

]
.

The top left block HĽ is indexed by words of degree≤ d, and the bottom right block
C is indexed by words of degree d +1. By (4.8), HL is positive definite.

We shall modify C to make the new matrix flat over HĽ. Since HL is positive
definite, Schur complement arguments from Proposition 1.11 imply that there exists

4.4 Constrained optimization over the nc ball and the nc polydisc 93

Z with B = HĽZ and C � ZT HĽZ. Let us form

HL̂ =

[
HĽ B
BT ZT HĽZ

]
.

Then HL̂ � 0 and HL̂ is a 1-flat over HĽ by construction. It also satisfies the Hankel
condition (1.13), since there are no constraints related to the bottom right block.
(Note: this uses the non-commutativity and the fact that we are considering only
extensions by one degree.) Thus HL̂ is a positive semidefinite Hankel matrix and
yields a positive linear functional L̂ : R〈X〉2d+2 → R which is 1-flat (see Remark
1.43).

The linear functional L̂ satisfies the assumptions of Theorem 1.27 and Remark
1.28. Hence there is an n-tuple A of symmetric matrices of order s≤ σ(d) (the order
follows from the construction, see the text below) and a vector v ∈ Rs such that

L̂(p∗q) = 〈 p(A)v |q(A)v〉

for all p,q ∈ R〈X〉 with deg p+degq≤ 2d. By linearity,

〈 f (A)v |v〉= L̂(f) = L(f)< 0. (4.9)

It remains to be seen that A is a row contraction, i.e., 1−∑ j A2
j � 0. For this we need

to recall the construction of the A j from the proof of Theorem 1.27.
Let E = ranHL̂. There exist s linearly independent columns of HĽ labeled by

words w ∈ 〈X〉 with degw≤ d which form a basis B of E. The scalar product on E
is induced by L̂, and Ai is the left multiplication with Xi on E, i.e., Ai : u 7→ Aiu for
u ∈ 〈X〉d , where Aiu is the column of HĽ or B corresponding to Xiu ∈ 〈X〉d+1. Let
u ∈ E be arbitrary. Then there are αv ∈ R for v ∈ 〈X〉d with

u = ∑
v∈〈X〉d

αvv.

Write u = ∑v αvv ∈ R〈X〉d . Now compute

〈(1−∑
j

A2
j)u |u〉= ∑

v,v′∈〈X〉d
αvαv′〈(1−∑

j
A2

j)v |v′ 〉

= ∑
v,v′

αvαv′〈v |v′ 〉−∑
v,v′

αvαv′∑
j
〈A jv |A jv′ 〉

= ∑
v,v′

αvαv′ L̂(v
′∗v)−∑

v,v′
αvαv′∑

j
L̂(v′∗X2

j v)

= L̂(u∗u)−∑
j

L̂(u∗X2
j u) = L(u∗u)−∑

j
L̂(u∗X2

j u).

(4.10)

Here, the last equality follows from the fact that L̂2d+1 = Ľ = L2d+1 = L|R〈X〉2d+1
.

We now estimate the summands L̂(u∗X2
j u). By construction the bottom right corner

of HL is greater (w.r.t. to positive semidefiniteness) than the bottom right corner of

94 4 Eigenvalue optimization of polynomials in non-commuting variables

HL̂, therefore

L̂(u∗X2
j u) = HL̂(X ju,X ju)≤ HL(X ju,X ju) = L(u∗X2

j u). (4.11)

Using (4.11) in (4.10) yields

〈(1−∑
j

A2
j)u |u〉= L(u∗u)−∑

j
L̂(u∗X2

j u)

≥ L(u∗u)−∑
j

L(u∗X2
j u) = L

(
u∗(1−∑

j
X2

j)u
)
≥ 0,

where the last inequality is a consequence of (4.8).
All this shows that A is a row contraction, that is, A ∈DB. As in (4.9),

〈 f (A)v |v〉= L(f)< 0,

contradicting our assumption f |DB � 0 and finishing the proof of Theorem 4.15.

Proposition 4.16. Let f ∈ SymR〈X〉2d . There exists an n-tuple A ∈DB(σ(d)), and
a unit vector v ∈ Rσ(d) such that

λmin(f ,B) = 〈 f (A)v |v〉.

In other words, the infimum in (Constr-Eigmin) is really a minimum. An analogous
statement holds for λmin(f ,D).

Proof. Note that f � 0 on DB if and only if f � 0 on DB(σ(d)); cf. the proof of
Lemma 1.35. Thus in (Constr-Eigmin) we are optimizing

(A,v) 7→ 〈 f (A)v |v〉 (4.12)

over (A,v) ∈DB(σ(d))×
{

v ∈ Rσ(d) | ‖v‖= 1
}

, which is evidently a compact set.
Hence by continuity of (4.12) the infimum is attained. The proof for the correspond-
ing statement for λmin(f ,D) is the same.

Proposition 4.17. Let f ∈ SymR〈X〉2d+1. Then there exists linear functionals

LB,LD : SymR〈X〉2d+2→ R

which are feasible for (Constr-Eig(s)DSDP) with s = d + 1 and S = B,D, respectively,
and the following is true:

LB(f) = λmin(f ,B) and LD(f) = λmin(f ,D).

Proof. We prove the statement for LB. Proposition 4.16 implies that there exist
A ∈ DB(σ(d)) and v such that λmin(f ,B) = 〈 f (A)v |v〉. Let us define LB(g) :=
〈g(A)v |v〉 for g ∈ SymR〈X〉2d+2. Then LB (actually its Hankel matrix) is feasible
for (Constr-Eig(s)DSDP) and LB(f) = λmin(f ,B). The same proof works for D.

4.4 Constrained optimization over the nc ball and the nc polydisc 95

Corollary 4.18. The hierarchy (Constr-Eig(s)DSDP) of lower bounds for λmin(f ,S) is
finite, when S = B or S = D. We need to solve only the member of the hierarchy
corresponding to s = d +1.

4.4.2 Extracting optimizers

In this subsection we explain how an optimizer (A,v) can be extracted from the
solutions of the SDPs we constructed in the previous subsection. The explanation is
done for B but the same line of reasoning works for D.

Algorithm 4.3: Extracting optimal solutions for (Constr-Eigmin) over B
Input: f ∈ SymR〈X〉2d+1, S = B;

1 Solve (Constr-Eig(s)DSDP) for s = d +1. Let L denote an optimizer, i.e.,

L(f) = λmin(f ,B) with Hankel matrix HL =

[
HĽ B
BT C

]
;

2 Modify HL: HL̂ =

[
HĽ B
BT ZT HĽZ

]
, where Z satisfies HĽZ = B;

3 HL̂ yields a flat positive linear map L̂ on R〈X〉2d+2 satisfying L̂2d+1 = L2d+1.
In particular, L̂(f) = L(f) = λmin(f ,B);

4 Use the GNS construction (Algorithm 1.1) on L̂ to compute A ∈DB and a
unit vector v with L̂(f) = 〈 f (A)v |v〉= λmin(f ,B) ;

Output: L̂, A, v;

The following theorem demonstrates that Algorithm 4.2 works much better, i.e.,
is comparable with Algorithm 4.3, when we are optimizing over the nc ball or the
nc polydisc.

Theorem 4.19. If S is the nc ball B= {1−∑ j X2
j } or the nc polydisc

D = {1−X2
1 , . . . ,1−X2

n }, then Algorithm 4.2 always finds a 1-flat solution in the
first iteration of the for loop.

Proof. In this case we have δ = 1. Proposition 4.17 implies that for s = d + 1 the
optimal solution L(d+1), computed in Step 3 of Algorithm 4.2, gives value equal
to λmin(f ,S). Although we can transform it into a 1-flat solution, as explained in
Algorithm 4.3, L(d+1) itself is not necessarily 1-flat. In such a case Algorithm 4.2
comes to Step 7 and computes L(d+1)

rand . We claim that it is always 1-flat. Let

Hrand =

[
Ȟ B
BT C

]
be the (Hankel) matrix, corresponding to L(d+1)

rand . Rows of Ȟ and B are labeled by
words of length ≤ d and the rows of BT and C by words of length d + 1. Since
Hrand � 0, we have B = ȞZ for some matrix Z and C � ZT ȞZ, see (1.14) and the
related comments.

96 4 Eigenvalue optimization of polynomials in non-commuting variables

Write

Hrand =

[
Ȟ ȞZ

ZT ȞT ZT ȞZ

]
+

[
0 0
0 C−ZT ȞZ

]
. (4.13)

The first matrix is obviously feasible for almost all constraints in (Constr-Eig(s)RAND)
and the second is positive semidefinite. The only constraint that is not obvious is
H⇑L,gi

∈ S+
σ(di)

, which is equivalent to nonnegativity of the linear functional on poly-

nomials p∗(1−∑i X2
i)p and p∗(1−X2

j)p for the nc ball and nc polydisc, respec-
tively.

Let L̃ be the linear functional corresponding to the first matrix on the right-hand
side of (4.13). Let H∆ denote the second matrix in (4.13). Observe that by construc-
tion, L̃, L(d+1) and L(d+1)

rand coincide on words of length at most 2d (they have the
same left upper corner). Then for p ∈ R〈X〉d ,

L̃
(

p∗(1−X2
i)p
)
= L̃(p∗p)− L̃(p∗X2

i p)

= L(d+1)
rand (p∗p)−

(
L(d+1)

rand (p∗X2
i p)− (H∆)pXi,pXi

)
= L(d+1)

rand

(
p∗(1−X2

i)p
)
+(H∆)pXi,pXi ≥ 0,

whence L̃ is feasible for (Constr-Eig(s)RAND). (We used that H∆ � 0, a consequence of
C � ZT ȞZ.) Similar reasoning works for 1−∑i X2

i .
In (Constr-Eig(s)RAND) we minimize 〈HL |R〉 for R random positive definite matrix.

Therefore

〈Hrand |R〉= 〈HL̃ |R〉+ 〈C−ZT ȞZ | R̂〉 (4.14)
≥ 〈HL̃ |R〉.

Here R̂ is the diagonal block of R corresponding to words of length d + 1 – the
bottom right part.

Since L̃ is feasible for (Constr-Eig(s)RAND), the minimum of (4.14) is attained where
the second summand is zero. Since R is positive definite this happens if and only if
C = ZT ȞZ, i.e., L(d+1)

rand = L̃, hence L(d+1)
rand is 1-flat.

Remark 4.20. We implemented Algorithm 4.2 in our open source Matlab package
NCSOStools [CKP11] and numerical evidence corroborates Theorem 4.19. If flat-
ness is checked by computing ranks with accuracy up to 10−6 then we get flat so-
lutions in all the examples we tested. Furthermore, Algorithm 4.2 works very well
in practice. It often returns flat solutions when S is archimedean even if it is not the
nc ball or nc polydisc. However, see also Example 4.21 below; the question which
archimedean S admits flat extensions is difficult.

Example 4.21. Consider S as in Remark 1.24. Then DS is empty, MS is archimedean
and D∞

S 6= ∅. None of the dual solutions can be flat, as each flat linear functional
would yield a point in DS.

http://ncsostools.fis.unm.si/

4.5 Implementation 97

4.5 Implementation

We implemented an algorithm to compute λmin(f) and λmin(f ,S) in NCSOStools
within the function NCeigMin. When we are further interested in extracting opti-
mizers we run NCeigOpt. The randomized Algorithm 4.2 is coded in
NCeigOptRand. However, due to special properties of the unconstrained case
and of the eigenvalue optimization over the nc ball and nc polydisc, we coded
these algorithms (Algorithms 4.1 and 4.3) separately into NCopt, NCoptBall
and NCoptCube, while computing only the optimum values can be also done by
NCmin, NCminBall and NCminCube.

Example 4.22. Let us consider f = 2−X2 +XY 2X−Y 2. We first compute λmin(f).

>> NCvars x y
>> f = 2 - xˆ2 + x*yˆ2*x - yˆ2;
>> opt = NCeigMin(f);

We get a message that f is unbounded from below, i.e., λmin(f) =−∞.
If we want to compute λmin(f ,S) over the nc ball, we run

>> opt = NCminBall(f);

and obtain λmin(f ,B) =−1. Finding an optimizer, i.e., a pair (A,v) with A ∈DS(r)
for some r and a unit vector v such that

〈 f (A)v |v〉 = λmin(f ,B) =−1

can be done by calling NCoptBall:

>> [X,fX,eig_val,eig_vec,A,fA]=NCoptBall(f);

This gives a matrix X of size 2×25 each of whose rows represents one symmetric
5×5 matrix,

A= reshape(X(1, :),5,5) =


−0.0000 0.7107 −0.0000 0.0000 0.0000

0.7107 0.0000 −0.0000 0.3536 −0.0000
−0.0000 −0.0000 −0.0000 0.0000 0.4946

0.0000 0.3536 0.0000 0.0000 0.0000
0.0000 −0.0000 0.4946 0.0000 0.0000



B= reshape(X(2, :),5,5) =


−0.0000 0.0000 0.7035 0.0000 0.0000

0.0000 −0.0000 0.0000 −0.0000 0.0000
0.7035 0.0000 0.0000 −0.3588 0.0000
0.0000 −0.0000 −0.3588 0.0000 −0.0000
0.0000 0.0000 0.0000 −0.0000 0.0000


such that

http://ncsostools.fis.unm.si/

98 4 Eigenvalue optimization of polynomials in non-commuting variables

f (A,B) = fX=


1.0000 −0.0000 −0.0000 0.0011 −0.0000
−0.0000 1.5091 −0.0000 −0.0000 −0.0000
−0.0000 −0.0000 1.1317 −0.0000 −0.0000

0.0011 −0.0000 −0.0000 1.7462 0.0000
−0.0000 −0.0000 −0.0000 0.0000 1.9080


with eigenvalues [1.0000,1.1317,1.5091,1.7462,1.9080]. So the minimal eigen-
value of f (A,B) is 1 and the corresponding eigenvector is (rounded to four digit
accuracy) v = [−1.0000 −0.0000 −0.0000 0.0015 −0.0000]T .

Example 4.23. Let us consider f = XY X and S = D = {1−X2,1−Y 2}. We can
write it as

f = −2.5+Y 2 +(1−X2)+(1−Y 2)+
1
2

X(1+Y)2X +
1
2

X(1−X2)X +

+
1
2

X(1−Y 2)X +
1
2

X4 +
1
2
(1−X2),

hence λmin(f ,D)≥−2.5. We use NCSOStools

>> NCvars x y
>> f = x*y*x;
>> [opt,S,D1,D2,b,SDP,Zd,H,H1] = NCminCube(f)

to obtain numerical evidence that λmin(f ,D) = −1. By some manual rounding of
entries from Zd, which is the optimal solution of (Constr-Eig(s)SDP′), we see

f = −1+α(1−X2)2 +
1
2

X(1+ y)2X +β (1−X2)+

+(1−β)X(1−X2)X +
1
2

X(1−Y 2)X ,

where α = 1−
√

3
3 and β =

√
3

3 . Therefore λmin(f ,D) ≥ −1. We can also extract
optimizers by

>> [X,fX,eig_val,eig_vec]=NCoptCube(f);

which gives us

A= reshape(X(1, :),5,5) =


0.0000 0.9979 0.0000 −0.0000 −0.0000
0.9979 −0.0000 0.0000 −0.0000 −0.0646
0.0000 0.0000 0.0000 0.7470 −0.0000
−0.0000 −0.0000 0.7470 −0.0000 −0.0000
−0.0000 −0.0646 −0.0000 −0.0000 −0.0000



B= reshape(X(2, :),5,5) =


−0.0000 −0.0000 0.7880 −0.0000 −0.0000
−0.0000 −1.0000 −0.0000 −0.0000 −0.0000

0.7880 −0.0000 0.0000 0.0000 0.4460
−0.0000 −0.0000 0.0000 −0.0000 −0.0000
−0.0000 −0.0000 0.4460 −0.0000 −0.0000



http://ncsostools.fis.unm.si/

4.5 Implementation 99

such that

f (A,B) = fX=


−0.9958 0.0000 −0.0000 0.0000 0.0645

0.0000 −0.0000 0.0000 0.5659 −0.0000
−0.0000 0.0000 −0.0000 0.0000 0.0000

0.0000 0.5659 0.0000 0.0000 −0.0000
0.0645 −0.0000 0.0000 −0.0000 −0.0042


which has eigenvalues [−1.0000 −0.0000 0.5659 −0.5659 −0.0000]T and the
eigenvector corresponding to smallest eigenvalue −1 is

v = [−0.9979 0.0000 −0.0000 0.0000 0.0646]T .

This is a numerical certificate that λmin(f ,D) =−1.
We point out that the optimum of f (considered as polynomial in commutative

variables) over the [−1,1]2 square in R2 is also −1.

Example 4.24. For f = 2−X2 +XY 2X −Y 2 and S = {4−X2−Y 2,XY +Y X − 2}
we immediately obtain by calling NCeigOptRand a dual optimal solution that is
flat (errflat ≈ 10−7):

>> NCvars x y
>> f = 2 - xˆ2 + x*yˆ2*x - yˆ2;
>> S = {4-xˆ2-yˆ2,x*y+y*x-2};
>> [X,fX,eig_min,flat,err_flat] = NCeigOptRand(f,S,4);

This means that we have a numerical certificate that λmin(f ,S) = f (s)sohs = L(s)
sohs =−1

for s = 2,3

Example 4.25. Let us consider the non-commutative version of Motzkin polyno-
mial fMot = XY 4X +Y X4Y − 3XY 2X + 1, introduced in Example 3.26 and the
constraint set S = {1−X4−Y 4}. Using NCeigOptRand we obtain for s = 3 a
flat dual optimum solution, hence fMot has minimum eigenvalue over S equal to
f (s)sohs = L(s)

sohs =−0.160813 for s = 3,4,

4.5.1 Application to quantum mechanics

We demonstrate how NCSOStools can be used to derive upper bounds for Bell in-
equalities in quantum mechanics. Bell inequalities provide a method to investigate
entanglement, one of the most peculiar features of quantum mechanics. Entangle-
ment allows two or more parties to be correlated in a non-classical way, and is often
studied through the set of bipartite quantum correlations, which consist of the condi-
tional probabilities that two physically separated parties can generate by performing
measurements on a shared entangled state.

If we fix a finite number of measurements and outcomes, the set of correla-
tions achievable using classically correlated instructions is a polytope. Hence it

http://ncsostools.fis.unm.si/

100 4 Eigenvalue optimization of polynomials in non-commuting variables

can be characterized by its finite number of facets, which correspond to the Bell-
inequalities. A typical Bell-inequality is given as f = ∑i, j ci, j p(i, j) ≤ C, with co-
efficients ci, j ∈ R, conditional probabilities p(i, j) and a constant C depending on
the given linear relation. To further understand the possibilities of quantum correla-
tions one is additionally interested in how far one can get beyond the classical Bell
inequality, i.e., can one find quantum correlations such that f > C holds, and what
is the possible maximum. This subject is known as maximal Bell violation in the
literature.

In other words, the goal is to maximize f under the condition that the p(i, j) are
generated by so-called non-local quantum measurements, i.e., for all i, j we have an
expression p(i, j) = vT XiYjv with a unit vector v and self-adjoint operators Xi,Yj,
with the additional constraint that all the Xi

′s commute with all the Yj
′s. One often

also assumes that the operators are projections. Replacing p(i, j) with this expres-
sion we can consider f as an nc polynomial in the variables X ,Y . Maximizing f is
then nothing else than finding the biggest eigenvalue f can attain when running over
the Xi

′s and Yi
′s. Hence, by considering − f , we obtain an eigenvalue minimization

problem and can apply the approximation hierarchy using SOHS to derive upper
bounds for the maximal violation.

Example 4.26. The most famous inequality is given by the Clauser, Horne, Shimony
and Holt (CHSH) inequality [CHSH69]. Let us assume we have a quantum system
consisting of two measurement for each party, each with the two outcomes ±1. In
quantum mechanics the measurements can be modeled by four unitary operators
X1,X2,Y1,Y2, i.e., they satisfy the following conditions: X2

1 = 1, X2
2 = 1, Y 2

1 = 1 and
Y 2

2 = 1. Since we are further interested in the non-local behavior of our quantum sys-
tem we get as additional constraint that the operators Xi commute with the operators
Yj.

The CHSH inequality is stated in terms of expectation values instead of probabili-
ties, but the concept remains the same. The expectation value 〈X〉 of an operator X in
relation the quantum system v (given as a unit vector) is defined as 〈X〉= 〈vT X |v〉.
So, the only difference is that the operators are now unitaries instead of projections.
Consider the linear relation

〈X1Y1〉+ 〈X1Y2〉+ 〈X2Y1〉−〈X2Y2〉.

This relation is bounded classically by 2, whereas the maximum Bell violation is
2
√

2. We now demonstrate the latter bound using NCSOStools [CKP11]. First set
up the linear relation we are interested in.

>> NCvars x1 x2 y1 y2;
>> g = x1*y1+x1*y2+x2*y1-x2*y2;
>> f = (g + g’)/2;

Then we add the constraints we get from the quantum model of a non-local mea-
surement

>> S = {x1ˆ2-1, 1-x1ˆ2, x2ˆ2-1, 1-x2ˆ2, y1ˆ2-1,...

http://ncsostools.fis.unm.si/

4.5 Implementation 101

1-y1ˆ2, 1-y2ˆ2, y2ˆ2-1,x1*y1-y1*x1, y1*x1-x1*y1,...
x1*y2-y2*x1, y2*x1-x1*y2, x2*y1-y1*x2,...
y1*x2-x2*y1, x2*y2-y2*x2, y2*x2-x2*y2};

Calling

>> opt = NCeigMin(-f,S,2);

gives then already the desired bound −opt= 2
√

2.

We finish by another example where the first level of the hierarchy does not yet
give the exact value. To the best of our knowledge the exact value for this example
is still unknown.

Example 4.27. Consider the I3322-inequality [CG04], where each party can perform
one of three possible measurements (X1,X2,X3 and Y1,Y2,Y3) each with two out-
comes. We are interested in finding upper bounds for the following relation of joint
probabilities

p(X1,Y1)+ p(X1,Y2)+ p(X1,Y3)+ p(X2,Y1)+ p(X2,Y2)− p(X2,Y3)

+p(X3,Y1)− p(X3,Y2)− p(X1)−2p(Y1)− p(Y2),

where we put the operator itself in the argument instead of just the index. Using
again that p(Xi,Yj) = vT XiYjv for some unit vector v, this problem can be written
more compactly as maximizing the eigenvalue of f , where f is given by the nc
polynomial X1(Y1 +Y2 +Y3)+X2(Y1 +Y2−Y3)+X3(Y1−Y2)−X1−2Y1−Y2. The
semi algebraic set S we are maximizing over is given by the conditions on non-local
quantum measurement, i.e., the operators are (positive-semidefinite) projections and
all Xi

′s commute with all Yj
′s.

To get upper bounds using the SOHS hierarchy set up the system

>> NCvars x1 x2 x3 y1 y2 y3;
>> g= x1*(y1+y2+y3)+x2*(y1+y2-y3)+x3*(y1-y2) ...
-x1-2*y1-y2;
>> f = (g + g’)/2;
>> S = {x1, x2, x3, y1, y2, y3, x1ˆ2-x1, x1-x1ˆ2,...
x2ˆ2-x2, x2-x2ˆ2,x3ˆ2-x3,x3-x3ˆ2, y1ˆ2-y1,...
y1-y1ˆ2, y2-y2ˆ2, y2ˆ2-y2,y3ˆ2-y3, y3-y3ˆ2,...
x1*y1-y1*x1, y1*x1-x1*y1, x1*y2-y2*x1,...
y2*x1-x1*y2, x1*y3-y3*x1, y3*x1-x1*y3,...
x2*y1-y1*x2, y1*x2-x2*y1, x2*y2-y2*x2,...
y2*x2-x2*y2, x2*y3-y3*x2, y3*x2-x2*y3,...
x3*y1-y1*x3, y1*x3-x3*y1, x3*y2-y2*x3,...
y2*x3-x3*y2, x3*y3-y3*x3, y3*x3-x3*y3 };

Calling

>> opt = NCeigMin(-f,S,2);

gives the upper bound 0.375. Calling the next level

102 References

>> opt = NCeigMin(-f,S,4);

gives the bound 0.2509400561.

These bounds have already been computed by Doherty et al. [DLTW08] where
they calculated by hand the dual problem of the original maximization problem
and fed this into an SDP solver. NCSOStools [CKP11] now provides a direct
way to perform these kind of computations. A nice list of derived upper bounds for
Bell inequalities using the approximation hierarchy based on SOHS can be found in
[PV09].

References

[CG04] Daniel Collins and Nicolas Gisin. A relevant two qubit Bell inequal-
ity inequivalent to the CHSH inequality. J. Phys. A, 37(5):1775–1787,
2004.

[CHSH69] John F. Clauser, Michael A. Horne, Abner Shimony, and Richard A.
Holt. Proposed experiment to test local hidden-variable theories. Phys.
Rev. Lett., 23:880–884, Oct 1969.

[CKP11] Kristijan Cafuta, Igor Klep, and Janez Povh. NCSOStools: a computer
algebra system for symbolic and numerical computation with noncom-
mutative polynomials. Optim. Methods. Softw., 26(3):363–380, 2011.
Available from http://ncsostools.fis.unm.si/.

[CKP12] Kristijan Cafuta, Igor Klep, and Janez Povh. Constrained polynomial
optimization problems with noncommuting variables. SIAM J. Optim.,
22(2):363–383, 2012.

[dK02] Etienne de Klerk. Aspects of semidefinite programming, volume 65 of
Applied Optimization. Kluwer Academic Publishers, Dordrecht, 2002.

[DLTW08] Andrew C. Doherty, Yeong-Cherng Liang, Ben Toner, and Stephanie
Wehner. The quantum moment problem and bounds on entangled
multi-prover games. In Computational Complexity, 2008. CCC’08.
23rd Annual IEEE Conference on, pages 199–210. IEEE, 2008.

[HL05] Didier Henrion and Jean-Bernard Lasserre. Detecting global optimality
and extracting solutions in GloptiPoly. In Positive polynomials in con-
trol, volume 312 of Lecture Notes in Control and Inform. Sci., pages
293–310. Springer, Berlin, 2005.

[HLL09] Didier Henrion, Jean-Bernard Lasserre, and Johan Löfberg. GloptiPoly
3: moments, optimization and semidefinite programming. Optim. Meth-
ods Softw., 24(4-5):761–779, 2009.

[KP16] Igor Klep and Janez Povh. Constrained trace-optimization of polyno-
mials in freely noncommuting variables. J. Global Optim., 2016.

[Nie14] Jiawang Nie. The A -truncated K -moment problem. Found. Comput.
Math., 14(6):1243–1276, 2014.

http://ncsostools.fis.unm.si/
http://ncsostools.fis.unm.si/

References 103

[PNA10] Stefano Pironio, Miguel Navascués, and Antonio Acı́n. Convergent
relaxations of polynomial optimization problems with noncommuting
variables. SIAM J. Optim., 20(5):2157–2180, 2010.

[PV09] Károly F. Pál and Tamás Vértesi. Quantum bounds on Bell inequalities.
Phys. Rev. A, 79:022120, Feb 2009.

[VB96] Lieven Vandenberghe and Stephen Boyd. Semidefinite programming.
SIAM Rev., 38(1):49–95, 1996.

Chapter 5
Trace optimization of polynomials in
non-commuting variables

5.1 Introduction

In Chapter 3 trace-positivity together with the question how to detect it was explored
in details. Due to hardness of the decision problem “Is a given nc polynomial f
trace-positive?” we proposed a relaxation of the problem, i.e., we are asking if f is
cyclically equivalent to SOHS. The tracial Gram matrix method based on the tracial
Newton polytope was proposed (see Sections 3.3 and 3.4) to efficiently detect such
polynomials.

In this chapter we turn our attention to trace optimization of nc polynomials. We
are interested in computing the smallest number the trace of a given nc polynomial
can attain or approaches over a given nc semialgebraic set of symmetric matrices.
This is in general a very difficult question, so we employ approximation tools again
and present a tracial Lasserre relaxation scheme [Las01, Las09]. It yields again a hi-
erarchy of semidefinite programming problems resulting in an increasing sequence
of lower bounds for the optimum value. Finally we also shortly discuss the extrac-
tion of optimizers.

5.2 Unconstrained trace optimization

The purpose of this section is twofold. First we formulate the unconstrained trace
optimization problem and second we present a Lasserre type of approximation hier-
archy consisting of semidefinite programming problems. We also explore the duality
properties.

Let f ∈ R〈X〉 be given. We are interested in the trace-minimum of f , that is,

tr min(f) := inf{tr f (A) | A ∈ Sn }. (Trmin)

This is a hard problem. For instance, a good understanding of trace-positive poly-
nomials is likely to lead to a solution of the Connes’ embedding conjecture [Con76],

105

106 5 Trace optimization of polynomials in non-commuting variables

an outstanding open problem from operator algebras; see [KS08]. Another way to
see the hardness is due to a result of Ji [Ji13] who proved that deciding whether the
quantum chromatic number of a graph is at most three is NP-hard. This problem in
turn is a conic optimization problem which is dual to an optimization problem over
certain trace-positive polynomials, see [LP15] for details.

We can rewrite (Trmin) as

tr min(f) = sup{a | tr(f −a)(A)≥ 0, ∀A ∈ Sn}. (Trmin′)

We again assume sup∅=−∞. Nc polynomials from Θ 2 are trace-positive therefore
it is natural to consider the following relaxation of (Trmin′):

tr
Θ 2(f) := sup{a | f −a ∈Θ

2
2d}, (Trsohs)

where 2d = cdeg f (if cdeg f is an odd number then tr min(f) = tr
Θ 2(f) =−∞, hence

we do not need to consider this case).

Remark 5.1. Since we are only interested in the trace of nc polynomials f ∈ R〈X〉,
when evaluated on elements from Sn, DS or D II1

S we use that tr f (A) = tr f ∗(A) for
all A; hence there is no harm in replacing f by its symmetrization 1

2 (f + f ∗). Thus
we will focus in this chapter on symmetric nc polynomials.

Lemma 5.2. Let f ∈ SymR〈X〉. Then tr
Θ 2(f)≤ tr min(f).

Proof. Indeed, if a ∈ R is such that f − a ∈Θ 2 then 0 ≤ tr(f − a) = tr f − tra =
tr f −a, hence tr f ≥ a.

In general we do not have equality in Lemma 5.2. For instance, the Motzkin
polynomial f satisfies tr min(f) = 0 and tr

Θ 2(f) = sup∅ := −∞, see [KS08] and
Example 5.14. Nevertheless, tr

Θ 2(f) gives a solid approximation of tr min(f) for
most of the examples and is easier to compute. It is obtained by solving an instance
of SDP.

Suppose f ∈ SymR〈X〉 is of degree ≤ 2d (with constant term f1). Let Wd be a
vector of all words up to degree d with first entry equal to 1. Then (Trsohs) rewrites
into

sup f1−〈E1,1 |F 〉
s. t. f − f1

cyc∼ W∗
d(G−〈E1,1 |F 〉E1,1)Wd

F � 0.
(TrSDP)

Here E1,1 is again the matrix with all entries 0 except for the (1,1)-entry which is
1. The cyclic equivalence translates into a set of linear constraints, cf. Proposition
1.51.

In general (TrSDP) does not satisfy the Slater condition. Nevertheless:

Theorem 5.3. (TrSDP) satisfies strong duality.

Proof. The proof is essentially the same as that of Theorem 4.1 so is omitted. We
only mention an important ingredient is the closedness of the cone Θ 2 which is a
trivial corollary of Proposition 1.58.

5.3 Constrained trace optimization 107

Repeating the Lagrangian procedure from (4.1)–(4.4) we obtain the dual to
(TrSDP):

LΘ 2(f) = infL(f)
s. t. L(1) = 1

L ∈ (Θ 2
2d)
∨

Following Remark 1.64 we rewrite this problem into an explicit semidefinite pro-
gramming problem:

LΘ 2(f) = inf 〈HL |G f 〉

s. t. (HL)u,v = (HL)w,z for all u∗v
cyc∼ w∗z,

(HL)1,1 = 1,
HL � 0.

(TrDSDP)

Recall that HL from the SDP above is a tracial Hankel matrix. It is of or-
der σ(d). By Theorem 5.3, we have tr

Θ 2(f) = LΘ 2(f). The question is, does
tr

Θ 2(f) = LΘ 2(f) = tr min(f) hold? This is true for the case of unconstrained eigen-
value optimization (see Theorem 5.3), while in the unconstrained trace optimization
it only holds under additional assumptions. We show that if the optimum solution
of (TrDSDP) satisfies a flatness condition (see Definitions 1.47 and 1.49), then the
answer to the question is affirmative. In particular, the proposed Θ 2-relaxation is
then exact. Furthermore, in this case we can even extract global trace-minimizers of
f .

Theorem 5.4. If the optimizer Hopt
L of (TrDSDP) satisfies the flatness condition, i.e.,

the linear functional underlying Hopt
L is 1-flat, then the Θ 2-relaxation is exact:

tr
Θ 2(f) = LΘ 2(f) = tr min(f).

Proof. The first equality is strong duality shown in Theorem 5.3. For the second
equality, if the linear functional Lopt corresponding to Hopt

L satisfies the flatness con-
dition, then by Theorem 1.71 there exist finitely many n-tuples A(j) of symmetric
matrices and positive scalars λ j > 0 with ∑ j λ j = 1 such that

Lopt(f) = ∑
j

λ jtr f (A(j)).

Hence LΘ 2(f) = Lopt(f)≤ tr min(f) and equality follows from weak duality.

5.3 Constrained trace optimization

In this section we present the tracial version of Lasserre’s relaxation scheme to min-
imize the trace of an nc polynomial.

Let S⊆ SymR〈X〉 be finite and let f ∈ SymR〈X〉. We are interested in the small-
est trace the polynomial f attains on DS, i.e.,

108 5 Trace optimization of polynomials in non-commuting variables

tr min(f ,S) := inf
{

tr f (A) | A ∈DS
}
. (Constr-Trmin)

Hence tr min(f ,S) is the greatest lower bound on the trace of f (A) for tuples of
symmetric matrices A ∈ DS, i.e., tr(f (A)− tr min(f ,S)A) ≥ 0 for all A ∈ DS, and
tr min(f ,S) is the largest real number with this property.

We introduce tr II1
min(f ,S) ∈ R as the trace-minimum of f on D II1

S . Since D II1
S ⊇

DS, we have tr II1
min(f ,S)≤ tr min(f ,S). As mentioned in Remark 1.61 (see also Propo-

sition 1.63), tr II1
min(f ,S) is more approachable than tr min(f ,S). In fact, in this section

we shall present Lasserre’s relaxation scheme producing a sequence of computable
lower bounds tr (s)

Θ 2(f ,S) monotonically converging to tr II1
min(f ,S). Here, as always,

the constraint set S is assumed to produce an archimedean quadratic module MS.
From Proposition 1.62 we can bound tr II1

min(f ,S) from below by

tr (s)
Θ 2(f ,S) := sup λ

s. t. f −λ ∈Θ 2
S,2s,

(Constr-Tr(s)SDP)

for 2s≥ cdeg f . For 2s < cdeg f , (Constr-Tr(s)SDP) is infeasible.

For each fixed s, (Constr-Tr(s)SDP) is an SDP (see Proposition 5.7 below) and leads
to the tracial version of the Lasserre relaxation scheme.

Corollary 5.5. Let S ⊆ SymR〈X〉, and let f ∈ SymR〈X〉. If MS is archimedean,
then

tr (s)
Θ 2(f ,S)−→

s→∞
tr II1

min(f ,S). (5.1)

The sequence tr (s)
Θ 2(f ,S) is monotonically increasing and bounded from above, but

the convergence in (5.1) is not finite in general.

Proof. This follows from Proposition 1.63. For each m ∈ N, there is s(m) ∈ N with

f − tr II1
min(f ,S)+

1
m
∈Θ

2
S,2s(m).

In particular,

tr (s(m))

Θ 2 (f)≥ tr II1
min(f ,S)− 1

m
.

Since also
tr (s(m))

Θ 2 (f)≤ tr II1
min(f ,S),

we obtain
lim
s→∞

tr (s)
Θ 2(f ,S) = lim

m→∞
tr (s(m))

Θ 2 (f) = tr II1
min(f ,S).

Example 5.6. For a simple example with non-finite convergence, consider

p = (1−X2)(1−Y 2)+(1−Y 2)(1−X2),

and

5.3 Constrained trace optimization 109

S = {1−X2,1−Y 2}.

Then tr II1
min(p,S) = 0, but p 6∈Θ 2

S [KS08, Example 4.3]. The first few lower bounds
for tr II1

min(p,S) are in the second column of Table 5.1.

Generally we are interested in tr II1
min(f ,S), but there is no good procedure or al-

gorithm for computing it. Therefore we stick to tr (s)
Θ 2(f ,S) since its computational

feasibility comes from the fact that verifying whether f ∈ Θ 2
S,2s is a semidefinite

programming feasibility problem when S is finite.

Proposition 5.7. Let f = ∑w fww ∈ SymR〈X〉 and S = {g1, . . . ,gt} ⊆ SymR〈X〉
with gi = ∑w∈〈X〉deggi

gi
ww. Then f ∈ Θ 2

S,2s if and only if there exists a positive

semidefinite matrix A of order σ(s) and positive semidefinite matrices Bi of order
σ(si) (recall that si = bs−deg(gi)/2c) such that for all w ∈ 〈X〉2s,

fw = ∑
u,v∈〈X〉s
u∗v

cyc
∼ w

Au,v +∑
i

∑
u,v∈〈X〉si ,z∈〈X〉deggi

u∗zv
cyc
∼ w

gi
zB

i
u,v. (5.2)

Proof. We start with the “only if” part. Suppose f ∈ Θ 2
S,2s, hence there exist nc

polynomials ai = ∑w∈〈X〉s ai
ww and bi, j = ∑w∈〈X〉si

bi, j
w w such that f

cyc∼ ∑i a∗i ai +

∑i, j b∗i, jgibi, j. In particular this means that for every w ∈ 〈X〉2s the following must
hold:

fw = ∑
i

∑
u,v∈〈X〉s
u∗v

cyc
∼ w

ai
uai

v +∑
i, j

∑
u,v∈〈X〉si ,z∈〈X〉deggi

u∗zv
cyc
∼ w

bi, j
u bi, j

v gi
z

= ∑
u,v∈〈X〉s
u∗v

cyc
∼ w

∑
i

ai
uai

v +∑
i

∑
u,v∈〈X〉si ,z∈〈X〉deggi

u∗zv
cyc
∼ w

gi
z ∑

j
bi, j

u bi, j
v .

If we define a matrix A of order σ(s) and matrices Bi of order σ(si) by
Au,v = ∑i ai

uai
v and Bi

u,v = ∑ j bi, j
u bi, j

v , then these matrices are positive semidefinite
and satisfy (5.2).

To prove the “if” part we use that A and Bi are positive semidefinite, therefore
we can find (column) vectors Ai and Bi, j such that A = ∑i AiAT

i and Bi = ∑ j Bi, jBT
i, j.

These vectors yield nc polynomials ai = AT
i Wσ(s) and bi, j = BT

i, jWσ(si), which give
a certificate for f ∈Θ 2

S,2s.

Remark 5.8. The last part of the proof of Proposition 5.7 explains how to construct
the certificate for f ∈Θ 2

S,2s. First we solve the semidefinite feasibility problem in the
variables A∈ S+

σ(s), Bi ∈ S+
σ(si)

subject to constraints (5.2). Then we use the Cholesky

or eigenvalue decomposition to compute column vectors Ai ∈Rσ(s) and Bi, j ∈Rσ(si)

which yield desired polynomial certificates ai ∈ R〈X〉s and bi, j ∈ R〈X〉si .

By Proposition 5.7, (Constr-Tr(s)SDP) is an SDP. It can be explicitly presented as

110 5 Trace optimization of polynomials in non-commuting variables

tr (s)
Θ 2(f ,S) = sup f1−A1,1−∑i gi

1Bi
1,1

s. t. fw = ∑ u,v∈〈X〉s
u∗v

cyc
∼ w

Au,v +∑i ∑ u,v∈〈X〉si ,z∈〈X〉deggi
u∗zv

cyc
∼ w

gi
zB

i
u,v

for all 1 6= w ∈ 〈X〉2s,

A ∈ S+
σ(s), Bi ∈ S+

σ(si)
,

(Constr-Tr(s)SDP′)

where we use si = bs−deg(gi)/2c.

Lemma 5.9. The dual semidefinite program to (Constr-Tr(s)SDP) and (Constr-Tr(s)SDP′)
is:

L(s)
Θ 2(f ,S) = inf L(f)

s. t. L : R〈X〉2s→ R is linear and symmetric,
L(1) = 1,
L(pq−qp) = 0, for all p,q ∈ R〈X〉s,
L(q∗q)≥ 0, for all q ∈ R〈X〉s,
L(h∗gih)≥ 0, for all i and all h ∈ R〈X〉si ,

where si = bs−deg(gi)/2c.

(Constr-Tr(s)DSDP)

Proof. For this proof it is beneficial to adopt a functional analytic viewpoint of
(Constr-Tr(s)SDP) and (Constr-Tr(s)SDP′).

We have the following chain of reasoning, similar to (4.1)–(4.4) (recall 2s ≥
dcdeg f e):

sup {λ | f −λ ∈Θ
2
S,2s} = sup

{
λ | f −λ ∈Θ 2

S,2s

}
= sup {λ | ∀L ∈

(
Θ

2
S,2s
)∨ : L(f −λ)≥ 0} (5.3)

= sup {λ | ∀L ∈
(
Θ

2
S,2s
)∨ with L(1) = 1 : L(f)≥ λ} (5.4)

= inf {L(f) | L ∈
(
Θ

2
S,2s
)∨ with L(1) = 1}. (5.5)

(Recall that
(
Θ 2

S,2s

)∨ is the set of all linear functionals R〈X〉2s → R nonnegative
on Θ 2

S,2s.) The last equality is trivial. We next give the reasoning behind the third
equality. Clearly, “ ≤ ” holds since every λ feasible for the right-hand side of (5.3)
is also feasible for the right-hand side of (5.4). To see the reverse inequality we con-
sider an arbitrary λ feasible for (5.4). Note that λ ≤ f1 = L̃(f), where L̃ ∈

(
Θ 2

S,2s

)∨
maps every polynomial into its constant term. We shall prove that L(f − λ) ≥ 0
for every L ∈

(
Θ 2

S,2s

)∨. Consider an arbitrary L ∈
(
Θ 2

S,2s

)∨ and define L̂ = L+ε

L(1)+ε

for some ε > 0. Then L̂(1) = 1 and L̂ ∈
(
Θ 2

S,2s

)∨, therefore L̂(f −λ) ≥ 0, whence
L(f −λ)≥ ε(λ −1). Since ε was arbitrary we get L(f −λ)≥ 0.

The problem inf{L(f) | L∈
(
Θ 2

S,2s

)∨ with L(1) = 1} is an SDP, and this is easily

seen to be equivalent to the problem (Constr-Tr(s)DSDP) given above. Indeed, if L ∈

5.4 Flatness and extracting optimizers 111(
Θ 2

S,2s

)∨
, L(1) = 1, then L must be nonnegative on the terms (1.18) and on every

commutator, therefore L is feasible for the constraints in (Constr-Tr(s)DSDP).

Proposition 5.10. Suppose DS contains an ε-neighborhood of 0. Then the SDP
(Constr-Tr(s)DSDP) admits Slater points.

Proof. Since the constructed linear functional in the proof of Proposition 4.9 is tra-
cial, the same proof can be applied here and is thus omitted.

Remark 5.11. As in the eigenvalue case, having Slater points for (Constr-Tr(s)DSDP) is
important for the duality theory. In particular, there is no duality gap, so for every
s≥ 1

L(s)
Θ 2(f ,S) = tr (s)

Θ 2(f ,S)

and
LΘ 2(f ,S) := lim

s→∞
L(s)

Θ 2(f ,S) = tr II1
min(f ,S).

Algorithms to compute the lower bounds tr (s)
Θ 2(f ,S) = L(s)

Θ 2(f ,S) for tr II1
min(f ,S)

and tr min(f ,S) are implemented in NCSOStools [CKP11]. We demonstrate it on
a few examples at the end of the chapter.

5.4 Flatness and extracting optimizers

In this section we assume S ⊆ SymR〈X〉 is finite, and f ∈ SymR〈X〉2d . Let MS be
archimedean. In this case D II1

S is bounded and hence tr II1
min(f ,S)>−∞. Since MS is

archimedean, for s big enough (Constr-Tr(s)SDP) will be feasible.
Like in constrained eigenvalue optimization, flatness is a sufficient condition for

finite convergence of the bounds tr (s)
Θ 2(f ,S) = L(s)

Θ 2(f ,S) and exactness of the relaxed
solution; it also enables the extraction of optimizers.

We first recall a variant of Theorem 1.71 adapted to this setting.

Theorem 5.12. Suppose Lopt is an optimal solution of (Constr-Tr(s)DSDP) for some
s ≥ d + δ that is δ -flat. Then there are finitely many n-tuples A(j) of symmetric
matrices in DS and positive scalars λ j > 0 with ∑ j λ j = 1 such that

Lopt(f) = ∑
j

λ jtr f (A(j)). (5.6)

In particular, tr min(f ,S) = tr II1
min(f ,S) = L(s)

Θ 2(f ,S) = tr (s)
Θ 2(f ,S).

We propose Algorithm 5.1 to find solutions of (Constr-Tr(s)DSDP) for s ≥ d + δ

which are δ -flat enabling us to extract a minimizer of (Constr-Tr(s)SDP). It is a variant
of Algorithm 4.2 and performs surprisingly well; e.g., it finds flat solutions in all

http://ncsostools.fis.unm.si/

112 5 Trace optimization of polynomials in non-commuting variables

tested situations where finite convergence was numerically detected (i.e., at least
two consequent bounds were equal).

Algorithm 5.1: Randomized algorithm to find flat solutions for problem
(Constr-Tr(s)DSDP)

Input: f ∈ SymR〈X〉 with deg f = 2d, S = {g1, . . . ,gt},
δ = dmaxi deg(gi)/2e, δmax;

1 Lflat = 0;
2 for s = d +δ ,d +δ +1, ...,d +δ +dmax do
3 Compute L(s) – the optimal solution for (Constr-Tr(s)DSDP);
4 if L(s) is δ -flat then
5 Lflat = L(s). Stop;
6 end
7 Compute L(s)

rand;

8 if L(s)
rand is δ -flat then

9 Lflat = L(s)
rand. Stop;

10 end
11 end

Output: Lflat;

In Step 7 we solve the SDP which is obtained from (Constr-Tr(s)DSDP) by fixing the
upper left hand corner of the Hankel matrix to be equal to the upper left hand corner
of the Hankel matrix of L(s) and by taking a full random objective function — like
in (Constr-Eig(s)RAND). We repeat this step several (e.g. 10) times. In our experiments,
this algorithm very often returns flat solutions if the module Θ 2

S,2d is archimedean.
On the other hand, there is little theoretical evidence supporting this performance.

We repeat Steps 1–3 at most δmax + 1 times, where δmax is for computational
complexity reasons chosen so that d+δ +δmax is at most 10, when we have two nc
variables, and is at most 8 if we have three nc variables. Otherwise the complexity of
the underlying SDP exceeds the capability of our current hardware. We implemented
Steps 1–3 from 5.1 in the NCSOStools function NCtraceOptRand.

In [KP16] we report numerical results obtained by running Algorithm 5.1 on
random polynomials. We generated random polynomials as in Subsection 4.3.2 and
we check for δ -flatness by computing ranks much like in Section 4.3.2. In all cases
we took the tolerance to be min{30 ·errflat,10−3}.

With this tolerance we can observe (as in Section 4.3.2) that in almost all tested
(random) cases Algorithm 5.1 returned a flat optimal solution already after the first
step, i.e., for s = d +δ . See [KP16, Table 4] for concrete results.

Once we have a flat optimum solution for (TrDSDP) or (Constr-Tr(s)DSDP) we can
extract optimizers, i.e., compute an n-tuple of symmetric matrices A, which is in
DS when we consider the constrained case, such that tr(A) is equal to tr min(f) and
tr min(f ,S), respectively, by running Algorithm 1.2.

http://ncsostools.fis.unm.si/

5.5 Implementation 113

5.5 Implementation

We can compute the unconstrained and constrained trace optimum exactly only
for very simple and nice examples. For all other cases we shall use numerical al-
gorithms. The software package NCSOStools contains NCcycMin to compute
the unconstrained trace optimum (i.e., tr

Θ 2(f) = LΘ 2(f)) and NCcycOpt to ex-
tract the related optimizers if the dual optimal solution is 1-flat. Likewise we have
NCtraceOpt to compute tr (s)

Θ 2(f ,S) and NCtraceOptRand to compute flat so-

lutions together with tr II1
min(f ,S) when a flat solution is found. In this case we also

extract optimizers by running Algorithm 1.2.

Example 5.13. Let

f = 3+X2
1 +2X3

1 +2X4
1 +X6

1 −4X4
1 X2 +X4

1 X2
2 +4X3

1 X2 +2X3
1 X2

2 −2X3
1 X3

2

+2X2
1 X2−X2

1 X2
2 +8X1X2X1X2 +2X2

1 X3
2 −4X1X2 +4X1X2

2 +6X1X4
2 −2X2

+X2
2 −4X3

2 +2X4
2 +2X6

2 .

The minimum of f on R2 is 1.0797. Using NCcycMin we obtain the floating-point
trace-minimum tr

Θ 2(f) = 0.2842 for f which is different from the commutative
minimum. In particular, the minimizers will not be scalar matrices. The dual optimal
solution for (TrDSDP) is of rank 4 and 1-flat. Thus the matrix representation of the
multiplication operators Ai is given by 4× 4 matrices (see the proof of Theorem
1.69 and Algorithm 1.1):

A1 =


−1.0761 0.5319 0.1015 0.2590

0.5319 0.4333 −0.3092 0.2008
0.1015 −0.3092 −0.2633 0.9231
0.2590 0.2008 0.9231 −0.3020

 ,

A2 =


0.7107 0.2130 0.7090 0.4415
0.2130 0.2087 0.3878 −0.9321
0.7090 0.3878 −0.5016 −0.0757
0.4415 −0.9321 −0.0757 0.1393

 .
The Artin-Wedderburn decomposition for the matrix ∗-algebra A generated by

A1,A2 gives in this case only one block. Using NCcycOpt, which essentially imple-
ments Algorithm 1.2 leads to the trace-minimizer

http://ncsostools.fis.unm.si/

114 5 Trace optimization of polynomials in non-commuting variables

Â1 =


−1.0397 −0.0000 0.1024 0.6363
−0.0000 −1.0397 −0.6363 0.1024

0.1024 −0.6363 0.4356 −0.0000
0.6363 0.1024 −0.0000 0.4356

 ,

Â2 =


−0.4246 0.0000 −0.1377 −0.8559

0.0000 −0.4246 0.8559 −0.1377
−0.1377 0.8559 0.7031 0.0000
−0.8559 −0.1377 0.0000 0.7031

 .
The reader can easily verify that tr (f (Â1, Â2)) = 0.2842.

Note that A is (as a real ∗-algebra) isomorphic to M2(C). For instance,

A ≈ Ã =

[
−1.0397 0.6363+0.1024i

0.6363−0.1024i 0.4356

]
,

B ≈ B̃ =

[
−0.4246 −0.8559−0.1377i

−0.8559+0.1377i 0.7031

]
.

In this case it is possible to find a unitary matrix U ∈C2×2 with A′ =U∗ÃU ∈R2×2,
and B′ =U∗B̃U ∈ R2×2 e.g.

U =

[
0.9803+0.1576i 0.1176+0.0189i

0.1191 −0.9929

]
,

A′ =
[
−0.8663 −0.8007
−0.8007 0.2622

]
, B′ =

[
−0.6136 0.7089

0.7089 0.8921

]
.

Then (A′,B′) ∈
(
S2×2

)2 is also a trace-minimizer for f .

Example 5.14. We demonstrate our software for constrained trace optimization for
the set S = {1−X2,1−Y 2} with the polynomial

p = (1−X2)(1−Y 2)+(1−Y 2)(1−X2)

from Example 5.6, and a non-commutative version of the Motzkin polynomial from
Example 4.25,

q = XY 4X +Y X4Y −3XY 2X +1.

It is obvious (see Example 5.6 and [KS08, Example 4.3]) that tr II1
min(p,S) = 0. Simi-

larly, tr II1
min(q,S) = 0 (see [KS08, Example 4.4]). We use NCSOStools as follows.

>> NCvars x y
>> S = {1 - xˆ2, 1 - yˆ2};
>> p = (1-xˆ2)*(1-yˆ2)+(1-yˆ2)*(1-xˆ2);
>> q = x*yˆ4*x+y*xˆ4*y-3*x*yˆ2*x+1;

To compute the sequence of lower bounds tr (s)
Θ 2(p,S) for tr II1

min(p,S) we call

http://ncsostools.fis.unm.si/

5.5 Implementation 115

>> [opt,decom_sohs,decom_S,base] = NCtraceOpt(p,S,2*s);

with s = 2,3,4,5. Similarly we obtain bounds for q. Results are reported in Table
5.1.

s tr (s)
Θ 2 (p,S) tr (s)

Θ 2 (q,S)
2 -0.2500 n.d.
3 -0.0178 0
4 -0.0031 0
5 -0.0010 0

Table 5.1 Lower bounds tr (s)
Θ 2 (f ,S) for p and q over S = {1−X2,1−Y 2}

We can see that the sequence of bounds tr (s)
Θ 2(p,S) of p increases and does not

reach the limit for s≤ 5. Actually, it never reaches tr II1
min(p,S); see Example 5.6. On

the other hand, the sequence of bounds for q is finite and reaches the optimal value
already for s = 3 (tr (2)

Θ 2(q,S) is not defined).

Example 5.15. Let p,q be as in Example 5.14 and let r = XY X . Let us define S =
{1−X ,1−Y,1+X ,1+Y}. The resulting sequences from the relaxation are in Table
5.2 and show that there is again no convergence in the first four steps for p, while
for q we get convergence at s = 4 and for r we get the optimal value immediately
(at s = 2).

s tr (s)
Θ 2 (p,S) tr (s)

Θ 2 (q,S) tr (s)
Θ 2 (r,S)

2 -2.0000 n.d. -1.0000
3 -0.2500 -0.0261 -1.0000
4 -0.0178 0.0000 -1.0000
5 -0.0031 0.0000 -1.0000

Table 5.2 Lower bounds tr (s)
Θ 2 (p,S), tr (s)

Θ 2 (q,S) and tr (s)
Θ 2 (r,S) over S = {1−X ,1−Y,1+X ,1+Y}

To compute e.g., tr (5)
Θ 2(p,S) we need to solve (Constr-Tr(s)SDP′) which has 3739

linear constraints and 5 positive semidefinite constraints with matrix variables of
order 63, 31, 31, 31, 31.

Example 5.16. Let us consider p= XY , q= 1+X(Y−2)+Y (X−2), f = p∗q+q∗p
and S = {4−X2,4−Y 2}. If we use NCSOStools and call

>> NCvars x y
>> p = x*y;q = 1+x*(y-2)+y*(x-2);f = p’*q+q’*p;
>> S = {4-xˆ2,4-yˆ2};
>> [opt_2,decom_1,dec_S1,base1] = NCtraceOpt(f,S,4);
>> [opt_3,decom_2,dec_S2,base2] = NCtraceOpt(f,S,6);
>> [opt_4,decom_3,dec_S3,base3] = NCtraceOpt(f,S,8);

http://ncsostools.fis.unm.si/

116 References

we obtain opt_2 = tr (2)
Θ 2(f ,S) = −8 and opt_3 = tr (3)

Θ 2(f ,S) = tr (4)
Θ 2(f ,S) =

−5.2165. This was checked numerically but running NCtraceOptRand did not
finish with a numerical proof of 1-flat solutions, so we can not claim that tr II1

min(f ,S)
is equal to −5.2165.

It is easy to see that the (commutative) minimum of f on DS ∩R2 = [−2,2]2 is
−4.5.

Example 5.17. Let us compute the trace minimum of f = 2−X2 +XY 2X−Y 2 over
the semialgebraic set defined by S = {4−X2−Y 2,XY +Y X−2}.

>> NCvars x y
>> f = 2 - xˆ2 + x*yˆ2*x - yˆ2;
>> S={4-xˆ2-yˆ2,x*y+y*x-2};
>> [X,fX,tr_val,flat,err_flat]=NCtraceOptRand(f,S,4);

Firstly we see that flat= 1 which means that the method has found a flat optimal
solution with err_flat≈ 4 ·10−8. This gives a matrix X of size 2×16; each row
represents one symmetric 4×4 matrix,

A = reshape(X(1, :),4,4) =


−0.0000 1.4044 −0.1666 −0.0000

1.4044 0.0000 0.0000 1.1329
−0.1666 0.0000 −0.0000 −0.8465
−0.0000 1.1329 −0.8465 0.0000



B = reshape(X(2, :),5,5) =


−0.0000 0.8465 1.1329 0.0000

0.8465 0.0000 0.0000 −0.1666
1.1329 0.0000 0.0000 −1.4044
0.0000 −0.1666 −1.4044 0.0000


such that A and B are from DS(4) and

fX = f (A,B) =


−1.0000 0.0000 0.0000 −0.0000

0.0000 −1.0000 0.0000 0.0000
0.0000 0.0000 −1.0000 0.0000
−0.0000 0.0000 0.0000 −1.0000


with (normalized) trace equal to trace_val = −1.

References

[CKP11] Kristijan Cafuta, Igor Klep, and Janez Povh. NCSOStools: a computer al-
gebra system for symbolic and numerical computation with noncommu-
tative polynomials. Optim. Methods. Softw., 26(3):363–380, 2011. Avail-
able from http://ncsostools.fis.unm.si/.

[Con76] Alain Connes. Classification of injective factors. Cases II1, II∞, IIIλ , λ 6=
1. Ann. of Math. (2), 104(1):73–115, 1976.

http://ncsostools.fis.unm.si/

References 117

[Ji13] Zhengfeng Ji. Binary Constraint System Games and Locally Commuta-
tive Reductions. arXiv preprint arXiv:1310.3794, 2013.

[KP16] Igor Klep and Janez Povh. Constrained trace-optimization of polynomials
in freely noncommuting variables. J. Global Optim., 2016.

[KS08] Igor Klep and Markus Schweighofer. Connes’ embedding conjecture and
sums of Hermitian squares. Adv. Math., 217(4):1816–1837, 2008.

[Las01] Jean B. Lasserre. Global optimization with polynomials and the problem
of moments. SIAM J. Optim., 11(3):796–817, 2000/01.

[Las09] Jean B. Lasserre. Moments, Positive Polynomials and Their Application.
Imperial College Press, London, 2009.

[LP15] Monique Laurent and Teresa Piovesan. Conic Approach to Quantum
Graph Parameters Using Linear Optimization Over the Completely Posi-
tive Semidefinite Cone. SIAM J. Optim., 25(4):2461–2493, 2015.

118 References

References 119

List of Symbols

Symbol Description

conv(A) convex hull of the set A
diag(A) vector with diagonal entries of the matrix A
Diag(A1, . . . ,An) block diagonal matrix with matrices Ai on the main diagonal
ei ith standard unit vector
In the n×n identity matrix
λi(X) ith smallest eigenvalue of a symmetric matrix X
λmin(X) (λmax(X)) the smallest (largest) eigenvalue of a symmetric matrix X
Mn the vector space of n×n real matrices
Mm,n the vector space of m×n real matrices
Sn the vector space of n×n symmetric matrices
S+n the cone of positive semidefinite n×n matrices
S++

n the cone of positive definite n×n matrices
tr(A) normalized trace of a square matrix A
X � Y X−Y ∈ S+n (X−Y � 0)
〈x |y〉 xT y
〈X |Y 〉 tr(XTY)
〈X〉 the monoid, freely generated by the letters X1, . . . ,Xn
R〈X〉 the free algebra with generating set {X1, . . . ,Xn}
SymR〈X〉 the set of all symmetric elements form R〈X〉
Σ 2 sums of hermitian squares
Σ 2

2d sums of hermitian squares of degree ≤ 2d
(Σ 2

2d)
∨ the dual cone to Σ 2

2d
Wd vector with all words of degree ≤ d
MS quadratic module generated by S
MS,2d truncated quadratic module generated by S with elements of degree ≤ 2d
DS semialgebraic set associated to S⊆ SymR〈X〉
DS(k) DS∩Sn

k
D∞

S operator semialgebraic set
DF

S F -semialgebraic set
Nε an nc ε-neighborhood of 0
B(A,ε) an nc ε-neighborhood of A
cc(f) commutative collapse of f
deg α w α-degree of f
cyc∼ cyclic equivalence on R〈X〉
[f] canonical representative of f ∈ R〈X〉
λmin(f) smallest eigenvalue f ∈ SymR〈X〉 attains
λmin(f ,S) smallest eigenvalue of f ∈ SymR〈X〉 on D∞

S

f (s)sohs,L
(s)
sohs s-th approximation for λmin(f ,S)

B, D nc ball, nc polydisc (respectively)
tr min(f) smallest trace of f on Sn

tr
Θ 2(f) SDP approximation for tr min(f)

tr min(f ,S) smallest trace of f on DS

tr II1
min(f ,S) smallest trace of f on D II1

S

tr (s)
Θ 2(f ,S), L(s)

Θ 2(f ,S) SDP approximations for tr II1
min(f ,S) of order s

Index

F -semialgebraic set, 36

commutative collapse, 64
commutator, 34
conic program

strictly feasible, 43
cyclic equivalence, 34

degree, 20
cyclic-α-degree, 65

duality gap, 43
duality theory

strong duality, 43
weak duality, 42

eigenvalue optimization
approximation hierarchy, 86
constrained, 86
constrained optimization over nc ball and nc

polydisc, 91
optimizer extraction, 90
optimizer extraction algorithm, 85
randomized algorithm for flat solutions, 90
unconstrained, 82

extension of matrix, 32
flat, 33

extracting optimizers
constrained eigenvalue optimization, 89
constrained trace optimization, 112
eigenvalue optimization over nc ball and

polydisc, 95
unconstrained eigenvalue optimization, 84
unconstrained trace optimization, 107

flatness, 33
free ∗-algebra, 20
free algebra, 19, 20

Gram matrix method, 21

hermitian square, 21

involution, 20

matrix
δ -flat, 33
extension, 32
flat, 33
flat extension, 33
localizing, 31
nc Hankel, 31
positive definite, 17
positive semidefinite, 17
symmetric, 17

method
Augmented Newton chip method, 56
GNS construction, 41
Gram matrix method, 21, 52
Newton chip method, 55
Newton cyclic chip method, 71
tracial Gram matrix method, 68, 71

minimum degree, 20
module

cyclic quadratic, 35
quadratic, 24
quadratic archimedean, 25
truncated cyclic quadratic, 35
truncated quadratic, 24

monoid, 19
monomial, 20

nc ε-neighborhood of 0, 29
nc Hankel condition, 31
nc polynomial, 19

canonical representative, 65

121

122 Index

hermitian square, 21
positive semidefinite, 28, 81
sum of hermitian squares, 21
symmetric, 20
trace zero, 34

Newton polytope, 65
tracial, 65

optimal duality gap, 43

polynomial
degree, 20
minimum degree, 20

rational certificate, 44
right chip function, 54

Schur complement, 18
semialgebraic set, 24

F , 36
operator semialgebraic set, 25

semidefinite program, 42
standard dual form, 42
standard primal form, 42

Slater condition, 43
strict feasibility, 43
strong duality, 43

trace, 18
normalized, 18

trace optimization, 105
approximation hierarchy, 108
constrained, 107
randomized algorithm for flat solutions, 112
unconstrained, 105

weak duality, 42

	Introduction
	Organization of the book

	References
	Selected results from algebra and mathematical optimization
	Positive semidefinite matrices
	Words and polynomials in non-commuting variables
	Sums of hermitian squares and Gram matrices
	Quadratic modules and semialgebraic sets
	Gelfand-Naimark-Segal's construction
	Sums of hermitian squares and positivity
	Vanishing nc polynomials
	Hankel matrices and flatness
	Commutators, cyclic equivalence and trace zero polynomials
	Cyclic quadratic modules and trace-positivity
	Wedderburn's theorem
	Curto-Fialkow's theorems
	Semidefinite programming

	References
	Detecting sums of hermitian squares
	Introduction
	The Gram matrix method
	Newton chip method
	Augmented Newton chip method
	Implementation
	On the Gram matrix method
	Software package NCSOStools

	References
	Cyclic equivalence to sums of hermitian squares
	Introduction
	The cyclic degree
	The tracial Newton polytope
	The tracial Gram matrix method
	Implementation
	Detecting members of Theta
	BMV polynomials

	References
	Eigenvalue optimization of polynomials in non-commuting variables
	Introduction
	Unconstrained optimization
	Unconstrained optimization as a single SDP
	Extracting optimizers for the unconstrained case

	Constrained eigenvalue optimization of non-commutative polynomials
	Approximation hierarchy
	Extracting optimizers

	Constrained optimization over the nc ball and the nc polydisc
	Approximation hierarchies contain only one member
	Extracting optimizers

	Implementation
	Application to quantum mechanics

	References
	Trace optimization of polynomials in non-commuting variables
	Introduction
	Unconstrained trace optimization
	Constrained trace optimization
	Flatness and extracting optimizers
	Implementation

	References
	List of Symbols
	Index

